Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Korean Journal of Otolaryngology - Head and Neck Surgery ; : 106-112, 2023.
Article in Korean | WPRIM | ID: wpr-969057

ABSTRACT

Background and Objectives@#This study aimed to investigate the protective effect of polydeoxyribonucleotide (PDRN) against skin flap necrosis in a murine skin flap model.Materials and Method Twenty mice with rectangular skin flaps on the dorsum were randomly divided into the PDRN (n=10) and pentobarbital sodium (PBS) (n=10) injection groups. PDRN (8 mg/kg) was subdermally injected at 12 different points immediately after the operation. After 7 days, the flap perfusions were evaluated using a laser speckle contrast imaging (LSCI) system, and specimens were collected for immunohistochemistry analysis. @*Results@#The percentage of survival area relative to the total flap area was significantly higher in the PDRN group (60.87%±7.63%) than in the PBS group (45.23%±10.72%) (p<0.05). The mean LSCI perfusion signal of the distal part of the skin flap in the PBS group was 0.57±0.12, and that in the PDRN group was 0.74±0.13 (p<0.05). The PDRN group had a significantly lower interleukin 1 beta expression than the PBS group and higher vascular endothelial growth factor α expression than the PBS group (p<0.05). @*Conclusion@#These findings suggest that subdermally injected PDRN is more effective in enhancing flap survival during necrosis.

2.
Korean Journal of Otolaryngology - Head and Neck Surgery ; : 381-390, 2021.
Article in Korean | WPRIM | ID: wpr-920210

ABSTRACT

Reprogramming of cellular metabolism is an important, emerging, and universal hallmark of cancer which has received considerable attention during the recent era of cancer research. Cancer cells show characteristic alterations in glucose metabolism in order to fulfill the needs of biosynthesis for tumor proliferation and growth. However, under certain circumstances such as invasion and metastasis, cancer cells are prone to metabolic stress and will require different strategies to meet the high energetic demand from cancer progression. From various metabolic rewiring mechanisms, cancer cells adopt other metabolic pathways with alternative nutrient sources. Therefore, targeting cancer metabolism holds promising but great challenge caused by the metabolic plasticity of cancer cells. This review will discuss characteristic cancer metabolism in detail with special focus on lipid metabolism which is gathering increasingly keen interest, in order to find novel therapeutic approaches to head and neck cancer. By understanding and exploiting the synthesis, oxidation, and storage of fatty acids, we could investigate potential strategies to block cancer proliferation and progression.

SELECTION OF CITATIONS
SEARCH DETAIL