Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Article | IMSEAR | ID: sea-210659

ABSTRACT

This study aims at preparing and evaluating lapatinib-loaded polymeric micelles for the better treatment of breastcancer (BC). LP-loaded polymeric micelles (LP-PMs) were prepared as per our previous studies by using Soluplus®as the polymer. Therefore, we employed the lyophilization technique using mannitol as a cryoprotectant and furtherconducted in vitro and in vivo anticancer efficacy studies, in addition to our previously reported works. We found thatthe lyophilized LP-PMs were sufficiently stable and retained encapsulated drugs. Furthermore, their smooth surfacewas visualized on the atomic force microscopy. The X-ray powder diffractogram of LP-PMs showed successfulencapsulation of Lapatinib; however, the presence of few drug molecules on the surface was evidenced by energydispersive X-ray analysis. Furthermore, LP-PMs showed sustained release of drugs, with selective drug release in anacidic environment, resembling that of a tumor. The LP-PMs exhibited higher cytotoxicity against SKBr3 BC cellsand also induced effective inhibition of the growth of the tumor in vivo when compared to that of lapatinib solutionand marketed formulation. The results of this study indicate the greater potential of LP-PMs for the efficient treatmentfor BC

2.
Braz. j. pharm. sci ; 48(4): 699-709, Oct.-Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-665867

ABSTRACT

The efficacy of a drug in a specific application requires the maintenance of appropriate drug blood level concentration during a prolonged period of time. Controlled release delivery is available for many routes of administration and offers many advantages (as microparticles and nanoparticles) over immediate release delivery. These advantages include reduced dosing frequency, better therapeutic control, fewer side effects, and, consequently, these dosage forms are well accepted by patients. Advances in polymer material science, particle engineering design, manufacture, and nanotechnology have led the way to the introduction of several marketed controlled release products and several more are in pre-clinical and clinical development. The objective of this work is to prepare and evaluate diltiazem HCl loaded albumin microparticles using a factorial design. Albumin (natural polymer) microparticles were prepared by emulsion heat-stabilization method. Selected formulations were characterized for their entrapment efficiency, particle size, surface morphology, and release behavior. Analysis of variance for entrapment efficiency indicates that entrapment efficiency is best fitted to a response surface linear model. Surface morphology was studied by scanning electron microscopy. Scanning electron microscopy of the microparticles revealed a spherical, nonporous and uniform appearance, with a smooth surface. The geometric mean diameter of the microparticles was found to be 2-9 µm, which more than 75% were below 3.5 µm and drug incorporation efficiency of 59.74 to 72.48% (w/w). In vitro release profile for formulations containing diltiazem HCl loaded BSA microparticles with heat stabilization technique shows slow controlled the release of the drug up to 24 hours. The release pattern was biphasic, characterized by an initial burst effect followed by a slow release. All selected microparticles exhibited a prolonged release for almost 24 hours. On comparing regression-coefficient (r²) values for Hixson Crowel, Higuchi and Peppas kinetic models, different batches of microparticles showed Fickian, non-Fickian, and diffusion kinetics. The release mechanism was regulated by D:P ratio. From the statistical analysis it was observed that as the drug:polymer (D:P) ratio increased, there was a significant increase in the encapsulation efficiency. Based on the particle size, entrapment efficiency and physical appearance, DTM-3 formulations were selected for in vivo release study and stability study. The in vivo result of drug loaded microparticles showed preferential drug targeting to liver followed by lungs, kidneys and spleen. Stability studies showed that maximum drug content and closest in vitro release to initial data were found in the formulation stored at 4 ºC. In present study, diltiazem HCl loaded BSA microparticles were prepared and targeted to various organs to satisfactory level and were found to be stable at 4 ºC.


A eficácia terapêutica de um fármaco depende da manutenção de seu nível plasmático adequado em determinado intervalo de tempo. Nesse sentido, a liberação modificada de fármacos está disponível em muitas vias de administração e oferece muitas vantagens (como micropartículas e nanopartículas) quando comparada às formulações de liberação imediata. Essas vantagens incluem reduzida frequência da dosagem, melhor controle terapêutico e menos efeitos colaterais. Assim sendo, esses produtos apresentam maior aceitação pelos pacientes. Os avanços na ciência dos materiais, na engenharia das partículas, em manufatura e em nanotecnologia permitiram a introdução no mercado de vários produtos de liberação modificada e vários outros se encontram em desenvolvimento pré-clínico e clínico. O objetivo do presente trabalho foi preparar e avaliar o fármaco cloridrato de diltiazem associado a micropartículas de albumina utilizando planejamento fatorial. As micropartículas de albumina, um polímero natural, foram preparadas por método de emulsão empregando estabilização por calor. As formulações selecionadas foram caracterizadas no que se refere à sua eficiência de encapsulamento, tamanho médio de partículas, morfologia de superfície e perfil de liberação do fármaco. A análise de variância relativa à eficiência de encapsulamento indicou superfície de resposta linear. Com referência à morfologia superficial, essa foi avaliada empregando microscopia eletrônica de varredura. Essa análise revelou micropartículas esféricas, não porosas e de aparência uniforme, com superfície lisa. O diâmetro médio das micropartículas foi entre 2 e 9 µm, sendo que mais de 75% das micropartículas se apresentaram abaixo de 3,5 µm. Além disso, a eficiência de encapsulamento foi entre 59,74 e 72,48%. Quanto ao ensaio para avaliação do perfil de liberação in vitro do fármaco associado às micropartículas, as formulações apresentaram liberação lenta até 24 horas. O comportamento foi caracterizado por liberação inicial (efeito burst) seguida por liberação lenta. Todas as fórmulas selecionadas apresentaram liberação prolongada por aproximadamente 24 horas. Na comparação entre os valores de coeficientes de regressão (R²), os modelos propostos por Hixson Crowel, Higuchi e Peppas, para diferentes formulações de micropartículas, demonstraram cinética de liberação de acordo com modelo Fickiano e não-Fickiano. O mecanismo de liberação do fármaco foi regulado pela razão entre o fármaco e o polímero. A análise estatística revelou significativo aumento da eficiência de encapsulamento quando essa razão aumentou. As avaliações relativas à análise dimensional das micropartículas, à eficiência de encapsulamento do fármaco e à morfologia permitiram a seleção da formulação DTM-3 para os ensaios de liberação in vivo e para o estudo da estabilidade. O ensaio de liberação in vivo do fármaco associado às micropartículas demonstrou sítio-alvo preferencial no fígado, seguido pelos pulmões rins e baço. No presente estudo, as micropartículas de albumina contendo cloridrato de diltiazem foram adequadamente preparadas e orientadas satisfatoriamente para vários órgãos. Além disso, a formulação selecionada apresentou estabilidade físico-química a 4 ºC.


Subject(s)
Diltiazem/analysis , Drug Liberation , Kinetics , Albumins/pharmacokinetics
3.
Article in English | IMSEAR | ID: sea-135924

ABSTRACT

Background & objectives: Currently, herbal preparations are clinically used as functional food, food supplements or as add on therapy, which affects the bioavailability and also the net therapeutic potential of co-administered allopathic drugs. Therefore, it is important to assess the interaction among these two classes of drugs. Here we studied the interaction between orally-administered ethanolic extract of leaves of Vitex negundo Linn. (Verbenaceae) (VN extract) and paracetamol in albino rats. Method: Solvent free dried extract of VN leaves was orally given to experimental rats in different doses (62.5-1000 mg/kg/b.wt.), daily for six consecutive days. On days 3 and 6, paracetamol (100 mg/kg/b.wt.) was orally administered to these extract treated rats and control rats (drug vector). At various time intervals (5 min - 120 min), blood was collected from each animal and paracetamol concentration was determined in plasma by using HPLC with UV detector at 249 nm. Various pharmacokinetic parameters were calculated by non compartmental model. Results: A significant decline in plasma concentration of paracetamol with time-gap was recorded with the increasing dose of VN extract, without affecting its Tmax (maximum time to achieve peak plasma concentration). There was a significant decrease in the extent of absorption and decline in intensity of therapeutic response (as evidenced by reduced AUC value and decline in Cmax). Further, compared to control, the relative bioavailability of paracetamol, in presence of VN extract, decreased significantly. Interpretation & conclusions: VN extract or its ayurvedic formulation if co-administered with allopathic drug like paracetamol, the dose of allopathic drug needs to be adjusted in order to achieve desired therapeutic response of paracetamol.


Subject(s)
Acetaminophen/pharmacokinetics , Analgesics, Non-Narcotic/pharmacokinetics , Animals , Area Under Curve , Drug Interactions , Ethanol/chemistry , Female , Male , Medicine, Ayurvedic , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacokinetics , Plant Leaves/chemistry , Plant Preparations/adverse effects , Plant Preparations/chemistry , Random Allocation , Rats , Vitex/anatomy & histology , Vitex/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL