Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Pakistan Journal of Pharmaceutical Sciences. 2016; 29 (1 Supp.): 351-355
in English | IMEMR | ID: emr-177617

ABSTRACT

The blood serum rheological properties open the door to find suitable radio-protectors and convenient therapy for many cases of radiation exposure. The present study aimed to investigate the rheological properties of rat blood serum at wide range of shear rates after whole body irradiation with different gamma radiation doses in vivo. Healthy male rats were divided into five groups; one control group and 4 irradiated groups. The irradiation process was carried out using Co60 source with dose rate of 0.883cG/sec. Several rheological parameters were measured using Brookfield LVDV-III Programmable rheometer. A significant increase in viscosity and shear stress was observed with 25 and 50Gy corresponding to each shear rate compared with the control; while a significant decrease observed with 75 and 100Gy. The viscosity exhibited a Non-Newtonian behaviour with the shear rate while shear stress values were linearly related with shear rate. The decrease in blood viscosity might be attributed to changes in molecular weight, pH sensitivity and protein structure. The changes in rheological properties of irradiated rats' blood serum might be attributed to destruction changes in the haematological and dimensional properties of rats' blood products


Subject(s)
Animals, Laboratory , Serum/radiation effects , Rats, Wistar , Blood/radiation effects , Rheology
2.
Pakistan Journal of Pharmaceutical Sciences. 2016; 29 (5 Supp.): 1739-1743
in English | IMEMR | ID: emr-184103

ABSTRACT

The spectroscopic properties can indicate important features about the nature and severity of the disease. However, no earlier studies have been used the spectroscopic properties as a diagnostic tool for radiation detection. This study was aimed to use ultraviolet-visible and fluorescence spectroscopy as a diagnostic tool for gamma irradiation detection in rats in vivo. Adult male rats were exposed to 25, 50, 75 and 100 Gray as single dose, using Cobalt-60 [Co-60] source with a dose rate of 0.883 centi Gray/sec [cGy/s]. Ultraviolet and fluorescence spectroscopy of rat's blood serum were measured. After gamma irradiation of rats in vivo, the blood serum absorbance peaks for 25, 50, 75 and 100 Gray [Gy] decreased and shifted towards the ultra violet wavelength. A maximal change in fluorescence intensity of blood serum at 350 nm was obtained when exciting light at 194 nm after irradiation. The fluorescence intensity also decreased with the dose. The highest radiation gamma dose might be accompanied with the highest oxidative stress. This study suggests that at the above mentioned gamma radiation doses, the blood is highly fragmented; with low aggregation at 25 Gy and with high aggregation at 50-100 Gy

SELECTION OF CITATIONS
SEARCH DETAIL