Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Tissue Engineering and Regenerative Medicine ; (6): 165-178, 2021.
Article in English | WPRIM | ID: wpr-904084

ABSTRACT

BACKGROUND@#Chondroitin sulfate glycosaminoglycans (CS-GAGs) are the primary inhibitory GAGs for neuronal growth after central nervous system (CNS) injury. However, the inhibitory or permissive activity of CS-GAG subtypes is controversial and depends on the physiological needs of CNS tissues. In this study, we investigated the characteristics and effects of CS-GAGs on axonal growth, which was isolated from the brain cortices of normal rat embryo at E18, normal adult rat brain and injured adult rat brain. @*METHODS@#Isolated CS-GAGs from embryo, normal adult, and injured adult rat brains were used for analyzing their effect on attachment and axonal growth using modified spot assay with dorsal root ganglion (DRG) explants and cerebellar granule neurons (CGNs). CS-GAGs were separated using high performance liquid chromatography (HPLC), and the subtypes of CS-GAGs were analyzed. @*RESULTS@#CS-GAGs of all three groups inhibited CGN attachment and axonal growth of DRGs. However, CS-GAGs of normal adult rat brain exhibited higher inhibitory activity than those of the other groups in both assays. When subtypes of CS-GAGs were analyzed using HPLC, CS-A (4S) was the most abundant in all three groups and found in largest amount in normal adult rat brain. In contrast, unsulfated CS (CS0) and CS-C (6S) were more abundant by 3–4-folds in E18 group than in the two adult groups. @*CONCLUSION@#When compared with the normal adult rat brain, injured rat brain showed relatively similar patterns to that of embryonic rat brain at E18 in the expression of CS subtypes and their inhibitory effect on axonal growth. This phenomenon could be due to differential expression of CS-GAGs subtypes causing decrease in the amount of CS-A and mature-type CS proteoglycan core proteins.

2.
Tissue Engineering and Regenerative Medicine ; (6): 165-178, 2021.
Article in English | WPRIM | ID: wpr-896380

ABSTRACT

BACKGROUND@#Chondroitin sulfate glycosaminoglycans (CS-GAGs) are the primary inhibitory GAGs for neuronal growth after central nervous system (CNS) injury. However, the inhibitory or permissive activity of CS-GAG subtypes is controversial and depends on the physiological needs of CNS tissues. In this study, we investigated the characteristics and effects of CS-GAGs on axonal growth, which was isolated from the brain cortices of normal rat embryo at E18, normal adult rat brain and injured adult rat brain. @*METHODS@#Isolated CS-GAGs from embryo, normal adult, and injured adult rat brains were used for analyzing their effect on attachment and axonal growth using modified spot assay with dorsal root ganglion (DRG) explants and cerebellar granule neurons (CGNs). CS-GAGs were separated using high performance liquid chromatography (HPLC), and the subtypes of CS-GAGs were analyzed. @*RESULTS@#CS-GAGs of all three groups inhibited CGN attachment and axonal growth of DRGs. However, CS-GAGs of normal adult rat brain exhibited higher inhibitory activity than those of the other groups in both assays. When subtypes of CS-GAGs were analyzed using HPLC, CS-A (4S) was the most abundant in all three groups and found in largest amount in normal adult rat brain. In contrast, unsulfated CS (CS0) and CS-C (6S) were more abundant by 3–4-folds in E18 group than in the two adult groups. @*CONCLUSION@#When compared with the normal adult rat brain, injured rat brain showed relatively similar patterns to that of embryonic rat brain at E18 in the expression of CS subtypes and their inhibitory effect on axonal growth. This phenomenon could be due to differential expression of CS-GAGs subtypes causing decrease in the amount of CS-A and mature-type CS proteoglycan core proteins.

3.
Journal of Korean Neurosurgical Society ; : 669-679, 2018.
Article in English | WPRIM | ID: wpr-788739

ABSTRACT

OBJECTIVE: To compare the spinal bone fusion properties of activin A/BMP2 chimera (AB204) with recombinant human bone morphogenetic protein (rhBMP2) using a rat posterolateral spinal fusion model.METHODS: The study was designed to compare the effects and property at different dosages of AB204 and rhBMP2 on spinal bone fusion. Sixty-one male Sprague-Dawley rats underwent posterolateral lumbar spinal fusion using one of nine treatments during the study, that is, sham; osteon only; 3.0 μg, 6.0 μg, or 10.0 μg of rhBMP2 with osteon; and 1.0 μg, 3.0 μg, 6.0 μg, or 10.0 μg of AB204 with osteon. The effects and property on spinal bone fusion was calculated at 4 and 8 weeks after treatment using the scores of physical palpation, simple radiograph, micro-computed tomography, and immunohistochemistry.RESULTS: Bone fusion scores were significantly higher for 10.0 μg AB204 and 10.0 μg rhBMP2 than for osteon only or 1.0 μg AB204. AB204 exhibited more prolonged osteoblastic activity than rhBMP2. Bone fusion properties of AB204 were similar with the properties of rhBMP2 at doses of 6.0 and 10.0 μg, but, the properties of AB204 at doses of 3.0 μg exhibited better than the properties of rhBMP2 at doses of 3.0 μg.CONCLUSION: AB204 chimeras could to be more potent for treating spinal bone fusion than rhBMP2 substitutes with increased osteoblastic activity for over a longer period.


Subject(s)
Animals , Humans , Male , Rats , Activins , Bone Morphogenetic Proteins , Chimera , Haversian System , Immunohistochemistry , Osteoblasts , Palpation , Rats, Sprague-Dawley , Spinal Fusion
4.
Journal of Korean Neurosurgical Society ; : 669-679, 2018.
Article in English | WPRIM | ID: wpr-765309

ABSTRACT

OBJECTIVE: To compare the spinal bone fusion properties of activin A/BMP2 chimera (AB204) with recombinant human bone morphogenetic protein (rhBMP2) using a rat posterolateral spinal fusion model. METHODS: The study was designed to compare the effects and property at different dosages of AB204 and rhBMP2 on spinal bone fusion. Sixty-one male Sprague-Dawley rats underwent posterolateral lumbar spinal fusion using one of nine treatments during the study, that is, sham; osteon only; 3.0 μg, 6.0 μg, or 10.0 μg of rhBMP2 with osteon; and 1.0 μg, 3.0 μg, 6.0 μg, or 10.0 μg of AB204 with osteon. The effects and property on spinal bone fusion was calculated at 4 and 8 weeks after treatment using the scores of physical palpation, simple radiograph, micro-computed tomography, and immunohistochemistry. RESULTS: Bone fusion scores were significantly higher for 10.0 μg AB204 and 10.0 μg rhBMP2 than for osteon only or 1.0 μg AB204. AB204 exhibited more prolonged osteoblastic activity than rhBMP2. Bone fusion properties of AB204 were similar with the properties of rhBMP2 at doses of 6.0 and 10.0 μg, but, the properties of AB204 at doses of 3.0 μg exhibited better than the properties of rhBMP2 at doses of 3.0 μg. CONCLUSION: AB204 chimeras could to be more potent for treating spinal bone fusion than rhBMP2 substitutes with increased osteoblastic activity for over a longer period.


Subject(s)
Animals , Humans , Male , Rats , Activins , Bone Morphogenetic Proteins , Chimera , Haversian System , Immunohistochemistry , Osteoblasts , Palpation , Rats, Sprague-Dawley , Spinal Fusion
SELECTION OF CITATIONS
SEARCH DETAIL