Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. biol. trop ; 53(supl.3): 263-273, dic. 2005. tab, graf
Article in English | LILACS | ID: lil-454825

ABSTRACT

Mexican Pacific sea urchin studies have been focused mainly on species distribution, ecology and fisheries. Reef degradation by sea urchin bioerosion has not been studied previously en these reefs. We investigate the importance of Diadema mexicanum as a bioerosive agent of coral carbonate at Bahias de Huatulco, and the relative magnitude of coral accretion and bioerosion. At each of five localities in Bahias de Huatulco, sea urchin density, feeding and mechanical (spine) erosion was determined for three size class intervals. In general, D. mexicanum do not exert any significant role on coral reef community structure (live coral, dead coral or algal coverage) at the Huatulco area, probably because they are generally small (2.9-4 cm test size) and few in number (1.0-6.8 ind.m-2). Mean bioerosion rates are consistent with those measured for other diadematoids, as well as other urchin species in various eastern Pacific localities. However, the degree of bioerosive impact depends on species, test size, and population density of urchins. Coral carbonate removal by D. mexicanum erosion varies from 0.17 to 3.28 kgCaCO3m(-2)yr(-1). This represents a carbonate loss of < 5% of the annual coral carbonate production at Jicaral Chachacual, San Agustín and Isla Cacaluta, but 16 and 27% at Isla Montosa and La Entrega. On balance, coral accretion exceeds sea urchin erosion at all sites examined at Huatulco. At Bahias de Huatulco coral reef communities are actively growing, though in the coming years, it might be necessary to investigate the local effects of the interaction among erosion, and environmental and human induced perturbations


Subject(s)
Animals , Anthozoa/physiology , Conservation of Natural Resources , Carbonates/metabolism , Predatory Behavior/physiology , Sea Urchins/physiology , Seawater/microbiology , Ecosystem , Environmental Monitoring , Feeding Behavior/physiology , Mexico , Population Density , Population Dynamics
2.
Mem. Inst. Oswaldo Cruz ; 97(4): 541-546, June 2002. tab
Article in English | LILACS | ID: lil-314510

ABSTRACT

Forty-seven plant extracts of 10 species of the genus Euphorbia (Euphorbiaceae) used by Colombian traditional healers for the treatment of ulcers, cancers, tumors, warts, and other diseases, were tested in vitro for their potential antitumour (antiproliferative and cytotoxic) and antiherpetic activity. To evaluate the capacity of the extracts to inhibit the lytic activity of herpes simplex virus type 2 (HSV-2) and the reduction of viability of infected or uninfected cell cultures, the end-point titration technique (EPTT) and the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colorimetric assay were used, respectively. The therapeutic index of the positive extracts for the antiviral activity was determined by calculating the ratio CC50 (50 percent cytotoxic concentration) over IC50 (50 percent inhibitory concentration of the viral effect). Five of the 47 extracts (11 percent) representing 3 out of 10 Euphorbia species (30 percent) exhibited antiherpetic action; the highest activity was found in the leaf/stem water-methanol extracts from E. cotinifolia and E. tirucalli. The therapeutic indexes of these two plant species were > 7.1; these extracts exhibited no cytotoxicity. Six extracts (13 percent) representing 4 plant species (40 percent) showed cytotoxic activity. The highest cytotoxicity was found in the dichloromethane extract obtained from E. cotinifolia leaves and the CC50 values for the most susceptible cell lines, HEp-2 and CHO, were 35.1 and 18.1 æg/ml, respectively


Subject(s)
Humans , Animals , Female , Cricetinae , Antiviral Agents , Euphorbia/chemistry , Herpesvirus 2, Human , Plant Extracts , Antiviral Agents , Cells, Cultured , Colombia , Colorimetry , Endpoint Determination , Plant Extracts
SELECTION OF CITATIONS
SEARCH DETAIL