Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 45(12): 1172-1182, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-659631

ABSTRACT

The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.


Subject(s)
Female , Humans , Middle Aged , Blood Cell Count , Oxidative Stress/physiology , Resistance Training , Reactive Oxygen Species/blood , Biomarkers/blood , Case-Control Studies , Catalase/blood , Exercise Test , Glutathione Peroxidase/blood , Lipid Peroxidation/physiology , Superoxide Dismutase/blood
2.
J. venom. anim. toxins incl. trop. dis ; 18(2): 236-243, 2012. graf, tab
Article in English | LILACS, VETINDEX | ID: lil-639483

ABSTRACT

This study analyses venom from the elapid krait snake Bungarus sindanus, which contains a high level of acetylcholinesterase (AChE) activity. The enzyme showed optimum activity at alkaline pH (8.5) and 45ºC. Krait venom AChE was inhibited by substrate. Inhibition was significantly reduced by using a high ionic strength buffer; low ionic strength buffer (10 mM PO4 pH 7.5) inhibited the enzyme by 1. 5mM AcSCh, while high ionic strength buffer (62 mM PO4 pH 7.5) inhibited it by 1 mM AcSCh. Venom acetylcholinesterase was also found to be thermally stable at 45ºC; it only lost 5% of its activity after incubation at 45ºC for 40 minutes. The Michaelis-Menten constant (Km) for acetylthiocholine iodide hydrolysis was found to be 0.068 mM. Krait venom acetylcholinesterase was also inhibited by ZnCl2, CdCl2, and HgCl2 in a concentrationdependent manner. Due to the elevated levels of AChE with high catalytic activity and because it is more stable than any other sources, Bungarus sindanus venom is highly valuable for biochemical studies of this enzyme.(AU)


Subject(s)
Animals , Acetylcholinesterase , Acetylthiocholine , Snake Venoms , Bungarus , Enzymes , Hydrolysis
3.
Arq. bras. med. vet. zootec ; 63(1): 107-113, Feb. 2011. ilus
Article in English | LILACS | ID: lil-582332

ABSTRACT

Brain and serum lipid peroxidation was studied in rats treated with vincristine sulphate and different doses of nandrolone decanoate. Thirty rats were distributed into six groups (n=5). The treatments were applied once a week for two weeks. Sample collection was performed in the third week. Treatments during the first week were: G1 (control) - physiologic solution, G2 - vincristine sulphate (4mg/m²), G3 - physiologic solution, G4 - physiologic solution, G5- vincristine sulphate (4mg/m²), and G6 - vincristine sulphate (4mg/m²). In the second week, they were: G1 (control) - physiologic solution, G2- physiologic solution, G3 - nandrolone decanoate (1.8mg/kg-1), G4 - nandrolone decanoate (10mg/kg-1), G5 - nandrolone decanoate (1.8mg/kg-1), and G6 - nandrolone decanoate (10mg/kg-1). Lipid peroxidation increased with the isolated use of vincristine and nandrolone decanoate, and with vincristine associated to the highest dose of the ester as well. These results suggest that vincristine sulphate and nandrolone decanoate increase free radical production. Therapeutic dose of nandrolone decanoate when associated with vincristine sulphate proved to be beneficial, as it was able to protect the organism from damaging processes involved in free radical production.


Este estudo teve por objetivo detectar a peroxidação lipídica presente no cérebro e no soro de ratos tratados com sulfato de vincristina e diferentes doses de decanoato de nandrolona. Trinta ratos foram distribuídos em seis grupos (n=5). Os tratamentos foram aplicados uma vez por semana, durante duas semanas, e a coleta de amostras foi realizada na terceira semana. Na primeira semana, os tratamentos consistiram de: G1(controle) - solução fisiológica; G2 - sulfato de vincristina (4mg/m 2 ); G3 - solução fisiológica; G4 - solução fisiológica; G5 - sulfato de vincristina (4mg/m 2 ) e G6 - sulfato de vincristina (4mg/m 2 ). Na segunda semana: G1(controle) - solução fisiológica; G2 - solução fisiológica; G3 - decanoato de nandrolona (1.8mg/kg-1 ); G4 - decanoato de nandrolona (10mg/kg-1 ); G5 - decanoato de nandrolona (1.8mg/kg-1 ) e G6 - decanoato de nandrolona (10mg/kg-1 ). A peroxidação lipídica aumentou com o uso isolado tanto da vincristina quanto do decanoato de nandrolona e com a associação da vincristina à dose mais alta do éster. Estes resultados sugerem que o sulfato de vincristina e o decanoato de nandrolona aumentam a produção de radicais livres. A dose terapêutica do decanoato de nandrolona, quando associada ao sulfato de vincristina, provou ser benéfica, já que foi capaz de proteger o organismo dos processos prejudiciais induzidos pela produção de radicais livres.


Subject(s)
Rats , Steroids/analysis , Rats/classification , Cerebrum/anatomy & histology , Lipids/chemistry , Free Radicals/analysis
4.
Braz. j. med. biol. res ; 32(6): 761-6, Jun. 1999. tab
Article in English | LILACS | ID: lil-233709

ABSTRACT

The purpose of the present study was to investigate the in vitro and in vivo effects of aluminum sulfate on delta-aminolevulinic acid dehydratase (ALA-D) activity from the brain, liver and kidney of adult mice (Swiss albine). In vitro experiments showed that the aluminum sulfate concentration needed to inhibit the enzyme activity was 1.0-5.0 mM (N = 3) in brain, 4.0-5.0 mM (N = 3) in liver and 0.0-5.0 mM (N = 3) in kidney. The in vivo experiments were performed on three groups for one month: 1) control animals (N = 8); 2) animals treated with 1 g per cent (34 mM) sodium citrate (N = 8) and 3) animals treated with 1 g per cent (34 mM) sodium citrate plus 3.3 g per cent (49.5 mM) aluminum sulfate (N = 8). Exposure to aluminum sulfate in drinking water inhibited ALA-D activity in kidney (23.3 + ou - 3.7 per cent, mean + ou - SEM, P<0.05 compared to control), but enhanced it in liver (31.2 + ou - 15.0 per cent, mean + ou - SEM, P<0.05). The concentrations of aluminum in the brain, liver and kidney of adult mice were determined by graphite furnace atomic absorption spectrometry. The aluminum concentrations increased significantly in the liver (527 + ou - 3.9 per cent, mean + ou - SEM, P<0.05) and kidney (283 + ou - 1.7 per cent, mean + ou - SEM, P<0.05) but did not change in the brain of aluminum-exposed mice. One of the most important and striking observations was the increase in hepatic aluminum concentration in the mice treated only with 1 g per cent sodium citrate (34 mM) (217 + ou - 1.5 per cent, mean + ou - SEM, P<0.05 compared to control). These results show that aluminum interferes with delta-aminolevulinate dehydratase activity in vitro and in vivo. The accumulation of this element was in the order: liver > kidney > brain. Furthermore, aluminum had only inhibitory properties in vitro, while in vivo it inhibited or stimulated the enzyme depending on the organ studied.


Subject(s)
Animals , Mice , Male , Female , Aluminum/pharmacology , Brain/enzymology , Kidney/enzymology , Liver/enzymology , Porphobilinogen Synthase/metabolism , Sulfates/pharmacology , Brain/drug effects , Citrates , Kidney/drug effects , Liver/drug effects , Porphobilinogen Synthase/antagonists & inhibitors
5.
Braz. j. med. biol. res ; 31(7): 943-50, jul. 1998. tab, graf
Article in English | LILACS | ID: lil-212872

ABSTRACT

We investigated the effects of lead exposure during the pre- and postnatal period on the neurobehavioral development of female Wistar rats (70-75 days of age, 120-150 g) using a protocol of lead intoxication that does not affect weight gain. Wistar rats were submitted to lead acetate intoxication by giving their dams 1.0 mM lead acetate. Control dams received deionized water. Growth and neuromotor development were assessed by monitoring daily the following parameters in 20 litters: body weight, ear unfolding, incisor eruption, eye opening, righting, palmar grasp, negative geotaxis, cliff avoidance and startle reflex. Spontaneous alternation was assessed on potnatal day 17 using a T maze. The animals'ability to equilibrate on a beaker rim was measured on postnatal day 19. Lead intoxication was confirmed by measuring renal, hepatic and cerebral lead concentration in dams and litters. Lead treatment hastened the day of appearance of the following parameters: eye opening (control: 13.5 + 0.6, N= 88; lead: 12.9 + 0.6, N=72; P<0.05), startle reflex (control: 13.0 + 0.8, N= 88; lead: 12.0 + 0.7, N=72; P<0.05) and negative geotaxis. On the other hand, spontaneous alternation performance was hindered in lead-exposed animals (control: 37.6 + 19.7; lead: 57.5 + 28.3 percent of alternating animals; P<0.05). These results suggest that lead exposure without concomitant undernutrition alters rat development, affecting specific subsets of motor skills.


Subject(s)
Animals , Female , Rats , Pregnancy , Behavior, Animal/drug effects , Lead/toxicity , Motor Skills/drug effects , Analysis of Variance , Animals, Newborn , Birth Weight , Lead Poisoning/physiopathology , Prenatal Exposure Delayed Effects , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL