Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 56: e12546, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1505884

ABSTRACT

Intense stimulation of most living cells triggers the activation of immediate early genes, such as Fos and Jun families. These genes are important in cellular and biochemical processes, such as mitosis and cell death. The present study focused on determining the temporal expression pattern of Fos and Jun families in fibroblasts and neural stem cells of cerebellum, hippocampus, and subventricular zone (SVZ) of rats of different ages at 0, 0.5, 1, 3, and 6 h after stimulation with fibroblast growth factor (FGF)-2. In neonates, a similar expression pattern was observed in all cells analyzed, with lower expression in basal condition, peak expression at 0.5 h after stimulation, returning to baseline values between 1 and 3 h after stimulation. On the other hand, cells from adult animals only showed Fra1 and JunD expression after stimulation. In fibroblasts and hippocampus, Fra1 reached peak expression at 0.5 h after stimulation, while in the SVZ, peak level was observed at 6 h after stimulation. JunD in fibroblasts presented two peak expressions, at 0.5 and 6 h after stimulation. Between these periods, the expression observed was at a basal level. Nevertheless, JunD expression in SVZ and hippocampus was low and without significant changes after stimulation. Differences in mRNA expression in neonate and adult animals characterize the significant differences in neurogenesis and cell response to stimulation at different stages of development. Characterizing these differences might be important for the development of cell cultures, replacement therapy, and the understanding of the physiological response profile of different cell types.

2.
Braz. j. med. biol. res ; 54(2): e10656, 2021. graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1142583

ABSTRACT

Research on the prevention of post-traumatic epilepsy (PTE) has seen remarkable advances regarding its physiopathology in recent years. From the search for biomarkers that might be used to indicate individual susceptibility to the development of new animal models and the investigation of new drugs, a great deal of knowledge has been amassed. Various groups have concentrated efforts in generating new animal models of traumatic brain injury (TBI) in an attempt to provide the means to further produce knowledge on the subject. Here we forward the hypothesis that restricting the search of biomarkers and of new drugs to prevent PTE by using only a limited set of TBI models might hamper the understanding of this relevant and yet not preventable medical condition.


Subject(s)
Animals , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/prevention & control , Disease Models, Animal , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/prevention & control , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL