Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J. appl. oral sci ; 27: e20180574, 2019. graf
Article in English | LILACS, BBO | ID: biblio-1040233

ABSTRACT

Abstract Hypertension is one of the main causes of premature death in the world; also, it is associated with several bone alterations. Preclinical studies have demonstrated delayed alveolar bone healing in hypertensive rats. However, losartan has been favorable for consolidation of bone grafts and reduction in active periodontitis. Therefore, losartan is suggested to be effective in bone formation stages, as well as in the synthesis of matrix proteins and mineralization. Objectives: To evaluate the alveolar bone dynamics in hypertensive rats treated with losartan by laser confocal microscopy and histological analysis. Methodology: Thirty-two rats, 16 spontaneously hypertensive rats (SHR) and 16 Wistar albinus rats, treated or not with losartan (30 mg/kg/day) were used. Calcein fluorochrome at 21 days and alizarin red fluorochrome at 49 days were injected in rats (both 20 mg/kg). The animals were submitted to euthanasia 67 days after treatment, and then the right maxilla was removed for laser confocal microscopy analysis and the left maxilla for histological analysis. Results: This study showed a greater calcium marking in normotensive animals treated with losartan in relation to the other groups. Laser confocal microscopy parameters showed higher values of bone volume formed, mineralized surface, active surface of mineralization and bone formation rate in normotensive animals treated with losartan. However, a smaller mineralized surface was observed in all hypertensive animals. Conclusion: Losartan can improve bone mineralization parameters under normal physiological conditions, but the same anabolic effect does not occur under hypertension.


Subject(s)
Animals , Male , Losartan/pharmacology , Alveolar Process/drug effects , Alveolar Process/physiopathology , Hypertension/physiopathology , Antihypertensive Agents/pharmacology , Osteogenesis/drug effects , Rats, Inbred SHR , Time Factors , Blood Pressure/drug effects , Bone Regeneration/drug effects , Calcification, Physiologic/drug effects , Reproducibility of Results , Rats, Wistar , Microscopy, Confocal , Alveolar Process/pathology , Fluoresceins/analysis
2.
J. appl. oral sci ; 26: e20170326, 2018. graf
Article in English | LILACS, BBO | ID: biblio-954523

ABSTRACT

Abstract Alveolar bone healing after upper incisor extraction in rats is a classical model of preclinical studies. The underlying morphometric, cellular and molecular mechanism, however, remains imprecise in a unique study. Objectives The aim of this study was therefore to characterize the alveolar bone healing after upper incisor extraction in rats by micro computed tomographic (Micro-CT), immunohistochemical and real-time polymerase chain reaction (RT-PCR) analysis. Material and Methods Thirty animals (Rattus norvegicus, Albinus Wistar) were divided into three groups after upper incisors extraction at 7, 14, and 28 days. Micro-CT was evaluated based on the morphometric parameters. Subsequently, the histological analyses and immunostaining of osteoprotegerin (OPG), receptor activator of nuclear kappa B ligand (RANKL) and tartrate resistant acid phosphate (TRAP) was performed. In addition, RT-PCR analyses of OPG, RANKL, the runt-related transcription factor 2 (RUNX2), osteocalcin (OC), osteopontin (OPN), osterix (OST) and receptor activator of nuclear kappa B (RANK) were performed to determine the expression of these proteins in the alveolar bone healing. Results Micro-CT: The morphometric parameters of bone volume and trabecular thickness progressively increased over time. Consequently, a gradual decrease in trabecular separation, trabecular space and total bone porosity was observed. Immunohistochemical: There were no differences statistically significant between the positive labeling for OPG, RANKL and TRAP in the different periods. RT-PCR: At 28 days, there was a significant increase in OPG expression, while RANKL expression and the RANKL/OPG ratio both decreased over time. Conclusion Micro-CT showed the newly formed bone had favorable morphometric characteristics of quality and quantity. Beyond the RUNX2, OC, OPN, OST, and RANK proteins expressed in the alveolar bone healing, OPG and RANKL activity showed to be essential for activation of basic multicellular units during the alveolar bone healing.


Subject(s)
Humans , Male , Wound Healing/physiology , Bone Remodeling/physiology , Tooth Socket/physiology , Tooth Socket/diagnostic imaging , Reference Values , Time Factors , Tooth Extraction , Transcription Factors/analysis , Immunohistochemistry , Gene Expression , Osteocalcin/analysis , Reproducibility of Results , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Core Binding Factor Alpha 1 Subunit/analysis , Osteopontin/analysis , RANK Ligand/analysis , Osteoprotegerin/analysis , X-Ray Microtomography , Tartrate-Resistant Acid Phosphatase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL