Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Gastroenterology ; : 159-163, 2020.
Article | WPRIM | ID: wpr-834116

ABSTRACT

Serrated polyposis syndrome (SPS) can transform to malignant lesions through the sessile serrated pathway and traditional serrated pathway. These pathways may cause rapid neoplastic progression compared to the adenoma-carcinoma sequence, which may cause interval colorectal cancer. The authors experienced a case of SPS with a synchronous colon adenocarcinoma that was treated with an endoscopic mucosal resection. In pathology reviews, other parts of the adenocarcinoma showed sessile serrated adenoma. Therefore, patients with SPS have a potential for malignant transformation, highlighting the need for strict colonoscopy surveillance starting at the time of SPS diagnosis.

2.
Clinical and Experimental Vaccine Research ; : 50-60, 2017.
Article in English | WPRIM | ID: wpr-43944

ABSTRACT

PURPOSE: The Src homology 2 domain–containing adaptor protein B (SHB) is widely expressed in immune cells and acts as an important regulator for hematopoietic cell function. SHB silencing induces Th2 immunity in mice. SHB is also involved in T-cell homeostasis in vivo. However, SHB has not yet been studied and addressed in association with dendritic cells (DCs). MATERIALS AND METHODS: The effects of SHB expression on the immunogenicity of DCs were assessed by Shb gene silencing in mouse bone marrow–derived DCs (BMDCs). After silencing, surface phenotype, cytokine expression profile, and T-cell stimulation capacity of BMDCs were examined. We investigated the signaling pathways involved in SHB expression during BMDC development. We also examined the immunogenicity of SHB-knockdown (SHB(KD)) BMDCs in a mouse atopic dermatitis model. RESULTS: SHB was steadily expressed in mouse splenic DCs and in in vitro–generated BMDCs in both immature and mature stages. SHB expression was contingent on activation of the mitogen- activated protein kinase/Foxa2 signaling pathway during DC development. SHB(KD) increased the expression of MHC class II and costimulatory molecules without affecting the cytokine expression of BMDCs. When co-cultured with T cells, SHB(KD) in BMDCs significantly induced CD4+ T-cell proliferation and the expression of Th2 cytokines, while the regulatory T cell (Treg) population was downregulated. In mouse atopic dermatitis model, mice inoculated with SHB(KD) DCs developed more severe symptoms of atopic dermatitis compared with mice injected with control DCs. CONCLUSION: SHB expression in DCs plays an important role in T-cell homeostasis in vivo by regulating DC-mediated Th2 polarization.


Subject(s)
Animals , Mice , Cytokines , Dendritic Cells , Dermatitis, Atopic , Gene Silencing , Homeostasis , Phenotype , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL