Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Year range
1.
Asian Pacific Journal of Tropical Medicine ; (12): 480-485, 2018.
Article in Chinese | WPRIM | ID: wpr-972437

ABSTRACT

Objective: To make phytochemical studies of the leaf, pericarp and seed of Coffea benghalensis (C. Benghalensis) compared with those of the widely known Coffea arabica and Coffea liberica. Methods: The sample extracts were prepared by Soxhlet-extraction. Polyphenol content was analyzed by HPLC-ESI-MS/MS, the identification was carried out based on the retention time, UV and mass spectra of standards and literature data of the detected compounds. Results: Phenolic acids like caffeoylquinic acids, dicaffeoylquinic acids, feruloylquinic acids and coumaroylquinic acid, as well as mangiferin were detected as main constituents in all extracts. Procyanidin trimers were present exclusively in the leaves. In C. benghalensis, main constituents were 5-caffeoylquinic acid and 4-caffeoylquinic acid. Flavan-3-ols were described in all immature and mature pericarp and leaf extracts. Even though 4-feruloylquinic acid was described in both immature and mature seed, dicaffeoylquinic acids were identified only in the mature seed extracts. Mangiferin was present in the leaf, mature pericarp and seed. Conclusions: These analyses provide new chemotaxonomical data for the selected coffees, especially for C. benghalensis. Due to its high polyphenol content, our results indicate its significance of providing new data as a possible source for industry.

2.
Asian Pacific Journal of Tropical Medicine ; (12): 480-485, 2018.
Article in English | WPRIM | ID: wpr-825873

ABSTRACT

Objective:To make phytochemical studies of the leaf, pericarp and seed of Coffea benghalensis (C. Benghalensis) compared with those of the widely known Coffea arabica and Coffea liberica.Methods:The sample extracts were prepared by Soxhlet-extraction. Polyphenol content was analyzed by HPLC-ESI-MS/MS, the identification was carried out based on the retention time, UV and mass spectra of standards and literature data of the detected compounds.Results:Phenolic acids like caffeoylquinic acids, dicaffeoylquinic acids, feruloylquinic acids and coumaroylquinic acid, as well as mangiferin were detected as main constituents in all extracts. Procyanidin trimers were present exclusively in the leaves. In C. benghalensis, main constituents were 5-caffeoylquinic acid and 4-caffeoylquinic acid. Flavan-3-ols were described in all immature and mature pericarp and leaf extracts. Even though 4-feruloylquinic acid was described in both immature and mature seed, dicaffeoylquinic acids were identified only in the mature seed extracts. Mangiferin was present in the leaf, mature pericarp and seed.Conclusions:These analyses provide new chemotaxonomical data for the selected coffees, especially for C. benghalensis. Due to its high polyphenol content, our results indicate its significance of providing new data as a possible source for industry.

3.
Asian Pacific Journal of Tropical Medicine ; (12): 366-371, 2016.
Article in Chinese | WPRIM | ID: wpr-951424

ABSTRACT

Objective: To investigate the antioxidant activity, total phenolic and total tannin content of the pericarp and the seed of Coffea benghalensis (C. benghalensis) and Coffea liberica compared to Coffea arabica (C. arabica). Methods: The antioxidant potential, total tannin and polyphenol contents of the immature and mature seed and pericarp of C. benghalensis and Coffea liberica were quantified and compared to C. arabica. Enhanced chemiluminescence (ECL), 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity, Folin-Ciocalteau method and total tannin content assays were used. Results: Trolox equivalent (TE/g plant material) values obtained by ECL and DPPH methods showed loose correlation (r

4.
Asian Pacific Journal of Tropical Medicine ; (12): 1127-1135, 2016.
Article in Chinese | WPRIM | ID: wpr-951297

ABSTRACT

Coffea (coffee) species are grown in almost all countries along the Equator. Many members of the genus have a large production history and an important role both in the global market and researches. Seeds (Coffeae semen) are successfully used in food, cosmetic, and pharmaceutical industries due to its caffeine and high polyphenol content. Nowadays, the three best-known coffee species are Arabic (Coffea arabica L.), Robusta (Coffea robusta L. Linden), and Liberian coffees (Coffea liberica Hiern.). Even though, many records are available on coffee in scientific literature, wild coffee species like Bengal coffee (Coffea benghalensis Roxb. Ex Schult.) could offer many new opportunities and challenges for phytochemical and medical studies. In this comprehensive summary, we focused on the ethnomedicinal, phytochemical, and medical significance of coffee species up to the present.

5.
Asian Pacific Journal of Tropical Medicine ; (12): 366-371, 2016.
Article in English | WPRIM | ID: wpr-820259

ABSTRACT

OBJECTIVE@#To investigate the antioxidant activity, total phenolic and total tannin content of the pericarp and the seed of Coffea benghalensis (C. benghalensis) and Coffea liberica compared to Coffea arabica (C. arabica).@*METHODS@#The antioxidant potential, total tannin and polyphenol contents of the immature and mature seed and pericarp of C. benghalensis and Coffea liberica were quantified and compared to C. arabica. Enhanced chemiluminescence (ECL), 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity, Folin-Ciocalteau method and total tannin content assays were used.@*RESULTS@#Trolox equivalent (TE/g plant material) values obtained by ECL and DPPH methods showed loose correlation (r(2) = 0.587) while those measured by oxygen radical absorbance capacity assay were higher without correlation in each plant. A closer correlation was detected between the ECL method and the percentage antioxidant activity of the DPPH technique (r(2) = 0.610 7) in each species, however the immature pericarp of C. benghalensis showed much higher DPPH scavenging potential than was seen in the ECL assay. The immature pericarp of C. benghalensis expressed the highest tannin and polyphenol content, and a high polyphenol level was also detected in the immature seed of C. arabica. The immature pericarp of Bengal and Liberian coffees showed the largest amount of phenolic contents.@*CONCLUSIONS@#The obtained data highlight the potential role of C. benghalensis as a new source of natural antioxidants and polyphenols compared to C. arabica.

6.
Asian Pacific Journal of Tropical Medicine ; (12): 1127-1135, 2016.
Article in English | WPRIM | ID: wpr-819854

ABSTRACT

Coffea (coffee) species are grown in almost all countries along the Equator. Many members of the genus have a large production history and an important role both in the global market and researches. Seeds (Coffeae semen) are successfully used in food, cosmetic, and pharmaceutical industries due to its caffeine and high polyphenol content. Nowadays, the three best-known coffee species are Arabic (Coffea arabica L.), Robusta (Coffea robusta L. Linden), and Liberian coffees (Coffea liberica Hiern.). Even though, many records are available on coffee in scientific literature, wild coffee species like Bengal coffee (Coffea benghalensis Roxb. Ex Schult.) could offer many new opportunities and challenges for phytochemical and medical studies. In this comprehensive summary, we focused on the ethnomedicinal, phytochemical, and medical significance of coffee species up to the present.

SELECTION OF CITATIONS
SEARCH DETAIL