Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
International Journal of Radiation Research. 2016; 14 (4): 379-383
in English | IMEMR | ID: emr-187639

ABSTRACT

Background: polyethylene composites including boron can be used as an effective neutron shield. Our investigation focuses on manufacturing borated polyethylene nano-composite. The purpose of this study is to design a radiation shield for use in both neutron and gamma fields


Materials and Methods: borated polyethylene shields containing 2%, and 5% weight percentage of Boron nano-particles were constructed and their neutron attenuation was compared with pure polyethylene. Polycarbonate films were used to find the attenuation of Am-Be neutrons after passing the shields. Mechanical properties of the shields were finally compared


Results: mean [+/- SD] number of alpha tracks induced by neutrons passing through the shields, were found to be 1.0488×10[3]+/-128.98, 1.1972×10[3]+/-289.56and 1.5340×10[3]+/-206.52 for polyethylene with 5% by weight, polyethylene with 2% by weight boron nano-particles, and pure polyethylene, respectively. The neutron spectrum after each shield was also obtained by MCNP4C Monte Carlo simulations. On the other hand, borated polyethylene nano-composites showed higher tensile strength compared to that of pure polyethylene. Attenuation of neutrons measured in experiments and the result of MCNP simulation were in good agreement


Conclusion: a statistically significant difference was found between neutron attenuation by borated polyethylene nanocomposite made of 5% by weight boron and pure polyethylene. However, the difference between borated polyethylene nano-composite with 5% weight and 2% wt boron was not statistically significant

SELECTION OF CITATIONS
SEARCH DETAIL