Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
An. acad. bras. ciênc ; 90(1): 439-448, Mar. 2018. tab
Article in English | LILACS | ID: biblio-886884

ABSTRACT

ABSTRACT A total 120 piglets with an average live weight of 7.00 kg, weaned at 21 days, were used to evaluate the effect of neutral detergent fibre levels on the digestibility of nutrients and energy from the diets, productive performance, and the composition and rate of deposition of nutrients and energy in the bodies of piglets in the nursery phase. The animals were distributed according to a randomized-block design into five treatments, which consisted of neutral detergent fibre levels, with six replicates and four animals per plot. A quadratic effect was detected for the digestibility coefficients of nutrients and energy, feed intake and weight gain. The increase in fibre level promoted a linear increase in fat content in the carcass, blood, and body, whereas the energy in the carcass, organs, and body showed an inverse response. The results showed a quadratic effect on the nutrient deposition rate in the carcass, organs and body. In conclusion, the best digestibility of nutrients and energy from the diet is obtained with 10-11.5% neutral detergent fibre, as higher weight gain and greater protein deposition in the body are achieved at neutral detergent fibre levels of 10.6% and 10.3%, respectively.


Subject(s)
Animals , Male , Swine/physiology , Dietary Fiber/pharmacology , Digestion/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/physiology , Time Factors , Energy Intake/physiology , Weight Gain , Random Allocation , Reproducibility of Results , Age Factors , Diet , Animals, Newborn
2.
An. acad. bras. ciênc ; 89(2): 1221-1230, Apr.-June 2017. tab
Article in English | LILACS | ID: biblio-886698

ABSTRACT

ABSTRACT Two trials were aimed to evaluate beef tallow in diets with and without emulsifier on performance of pigs at growing-finishing phases. In the first trial, 15 barrows (22.03±0.62 kg) were distributed among three treatments: reference diet; test diet 1 (5% beef tallow) and test diet 2 (10% beef tallow). Beef tallow presented average value of 7130.97 kcal ME/kg. For the performance trail, 30 barrows (24.85±1.18 kg) were distributed among five treatments: T1 - diet with soybean oil and 3230 kcal ME /kg; T2 - diet with beef tallow and 3230 kcal ME/kg; T3 - diet with beef tallow and 3080 kcal ME/kg; T4 - diet with beef tallow, 3080 kcal/kg and 0.1% emulsifier; T5 - diet with beef tallow, 2930 kcal ME/kg and 0.1% emulsifier. Feed conversion was worse in animals fed diet with 3080 kcal ME/kg containing beef tallow and with 2930 kcal ME/kg with beef tallow and emulsifier. For economic availability, animals fed diet with beef tallow and 3230 kcal ME/kg and those fed diet with 3080 kcal ME/kg containing beef tallow and emulsifier, did not differ from animals fed diet with soybean oil, which enables the reduction up to 150 kcal ME/kg be compensated by emulsifier addition.


Subject(s)
Animals , Swine/growth & development , Emulsifying Agents/administration & dosage , Fats/administration & dosage , Diet, High-Fat/veterinary , Animal Feed , Reference Values , Time Factors , Triglycerides/blood , Soybean Oil/administration & dosage , Energy Intake , Weight Gain , Reproducibility of Results , Digestion/physiology , Fatty Acids/administration & dosage , Diet, High-Fat/methods
SELECTION OF CITATIONS
SEARCH DETAIL