Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Neuroscience Bulletin ; (6): 201-208, 2008.
Article in English | WPRIM | ID: wpr-264676

ABSTRACT

<p><b>OBJECTIVE</b>Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a dominant neurodegenerative disorder caused by an expansion of the polyglutamine (polyQ) tract in MJD-1 gene product, ataxin-3 (AT3). This disease is characterized by the formation of intraneuronal inclusions, but the mechanism underlying their formation is still poorly understood. The present study is to explore the relationship between wild type (WT) AT3 and polyQ expanded AT3.</p><p><b>METHODS</b>Mouse neuroblastoma (N2a) cells or HEK293 cells were co-transfected with WT AT3 and different truncated forms of expanded AT3. The expressions of WT AT3 and the truncated forms of expanded AT3 were detected by Western blotting, and observed by an inverted fluorescent microscope. The interactions between AT3 and different truncated forms of expanded AT3 were detected by immunoprecipitation and GST pull-down assays.</p><p><b>RESULTS</b>Using fluorescent microscope, we observed that the truncated forms of expanded AT3 aggregate in transfected cells, and the full-length WT AT3 is recruited onto the aggregates. However, no aggregates were observed in cells transfected with the truncated forms of WT AT3. Immunoprecipitation and GST pull-down analyses indicate that WT AT3 interacts with the truncated AT3 in a polyQ length-dependent manner.</p><p><b>CONCLUSION</b>WT AT3 deposits in the aggregation that was formed by polyQ expanded AT3, which suggests that the formation of AT3 aggregation may affect the normal function of WT AT3 and increase polyQ protein toxicity in MJD.</p>


Subject(s)
Animals , Mice , Ataxin-3 , Blotting, Western , Cell Line , Immunoprecipitation , Machado-Joseph Disease , Metabolism , Microscopy, Fluorescence , Nuclear Proteins , Genetics , Metabolism , Peptides , Metabolism , Transcription Factors , Genetics , Metabolism , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL