Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Acta Physiologica Sinica ; (6): 8-12, 2007.
Article in English | WPRIM | ID: wpr-258695

ABSTRACT

This paper was aimed to investigate the effects of ATP-sensitive potassium channels on the proliferation and differentiation of rat preadipocytes. We examined the expression of sulphonylurea receptor 2 (SUR2) mRNA in preadipocytes and adipocytes obtained by inducing for 5 d and the effects of the inhibitor (glibenclamide) and opener (diazoxide) of ATP-sensitive potassium channels on the expression of SUR2 mRNA in preadipocytes by real-time PCR. Preadipocyte proliferation and cell cycle were measured by MTT spectrophotometry and flow cytometer. The content of intracellular lipid was measured by oil red O staining, cell diameter was determined by Image-Pro Plus 5.0 software and the expression of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) mRNA was estimated by RT-PCR. SUR2 mRNA was expressed in both preadipocytes and adipocytes obtained by inducing for 5 d, and the expression in adipocytes was obviously higher than that in preadipocytes. Glibenclamide inhibited the expression of SUR2 mRNA in preadipocyte, promoted preadipocyte proliferation in a dose-dependent manner, increased the cell percentages in G(2)/M + S phase, increased lipid content, augmented adipocyte diameter, and promoted the expression of PPAR-gamma mRNA. But the actions of diazoxide were contrary to those of glibenclamide. These results suggest that ATP-sensitive potassium channels regulate the proliferation and differentiation of preadipocytes, and PPAR-gamma is probably involved in the effect of ATP-sensitive potassium channels.


Subject(s)
Animals , Male , Rats , ATP-Binding Cassette Transporters , Genetics , Metabolism , Adipocytes , Cell Biology , Cell Differentiation , Physiology , Cell Proliferation , Cells, Cultured , KATP Channels , Physiology , Obesity , Pathology , PPAR gamma , Metabolism , Potassium Channels, Inwardly Rectifying , Genetics , Metabolism , RNA, Messenger , Genetics , Metabolism , Rats, Sprague-Dawley , Receptors, Drug , Genetics , Metabolism , Sulfonylurea Receptors
SELECTION OF CITATIONS
SEARCH DETAIL