Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Journal of Breast Cancer ; : 10-16, 2005.
Article in Korean | WPRIM | ID: wpr-137949

ABSTRACT

PURPOSE: Although breast cancer the most common cancer for women remains a significant health problem, it has not been systematically studied until now. In an attempt to identify novel genes implicated in breast cancer development, we performed a suppression subtraction hybridization (SSH) with human breast cancer tissues, as well as with cloned genes, that are expressed more than in normal tissue. METHODS: After the identification of a novel gene, RT-PCR was performed to determine its mRNA expression in human breast cancers. In order to learn more about the expression profile of this gene, PCR was performed using various commercially available normal or carcinoma cell lines. The novel gene was found to be strongly expressed in breast cancer tissues and other carcinoma cell lines. To determine whether this novel gene was associated with cell cycle regulation, normal WI-38 fibroblast cells were stimulated with media containing 0.1% FBS for 48hours. RESULT: From the experimental results of the SSH, a novel clone, "Clone 135" which was strongly expressed in tumor compared to matched normal tissue, has been found. The novel clone was identified as being expressed in several tumor tissues and carcinoma cell lines. The time-course expression of this novel gene in the WI-38 (8PDL) normal lung cell line indicated a significant increase for G1-phase arrest. CONCLUSION: We have used a suppression subtractive hybridization (SSH) to generate a profile of genes overexpressed in human breast cancer. We have screened novel genes, of which "Clone 135" scored as a candidate oncogene that was overexpressed in tumor compared to matched normal tissue.


Subject(s)
Female , Humans , Breast Neoplasms , Breast , Cell Cycle , Cell Line , Clone Cells , Fibroblasts , Lung , Oncogenes , Polymerase Chain Reaction , RNA, Messenger
2.
Journal of Breast Cancer ; : 10-16, 2005.
Article in Korean | WPRIM | ID: wpr-137948

ABSTRACT

PURPOSE: Although breast cancer the most common cancer for women remains a significant health problem, it has not been systematically studied until now. In an attempt to identify novel genes implicated in breast cancer development, we performed a suppression subtraction hybridization (SSH) with human breast cancer tissues, as well as with cloned genes, that are expressed more than in normal tissue. METHODS: After the identification of a novel gene, RT-PCR was performed to determine its mRNA expression in human breast cancers. In order to learn more about the expression profile of this gene, PCR was performed using various commercially available normal or carcinoma cell lines. The novel gene was found to be strongly expressed in breast cancer tissues and other carcinoma cell lines. To determine whether this novel gene was associated with cell cycle regulation, normal WI-38 fibroblast cells were stimulated with media containing 0.1% FBS for 48hours. RESULT: From the experimental results of the SSH, a novel clone, "Clone 135" which was strongly expressed in tumor compared to matched normal tissue, has been found. The novel clone was identified as being expressed in several tumor tissues and carcinoma cell lines. The time-course expression of this novel gene in the WI-38 (8PDL) normal lung cell line indicated a significant increase for G1-phase arrest. CONCLUSION: We have used a suppression subtractive hybridization (SSH) to generate a profile of genes overexpressed in human breast cancer. We have screened novel genes, of which "Clone 135" scored as a candidate oncogene that was overexpressed in tumor compared to matched normal tissue.


Subject(s)
Female , Humans , Breast Neoplasms , Breast , Cell Cycle , Cell Line , Clone Cells , Fibroblasts , Lung , Oncogenes , Polymerase Chain Reaction , RNA, Messenger
3.
Journal of Korean Neurosurgical Society ; : 443-448, 2005.
Article in English | WPRIM | ID: wpr-33140

ABSTRACT

OBJECTIVE: A variety of genetic alterations in human glioblastoma comprises signal transduction and cell cycle arrest control of cellular processes. Subtractive hybridization is potentially a faster method for identifying differentially expressed genes associated with a particular disease state. Using the technique of subtraction, we isolated novel genes that are overexpressed in glioblastoma tissue as compared to normal brain tissue. METHODS: We evaluated the differential expression of genes in each of hybridizing tester and driver cDNAs to digested 130 clones. After sequencing of 130 clones and homology search, this study performed to determine mRNA expression of the unknown gene, "clone 47", in brain tissue, glioblasoma, and several cancer cell lines by reverse transcription-polymerase chain reaction (RT-PCR). To test the time course for G0-phase arrest, serum stimulation and expression at various times for RT-PCR performed. RESULTS: We identified 23 novel genes by BLAST of the digested 130 clones. The expressions of "clone 47" mRNA of glioblastoma and several cancer lines were significantly higher than normal brain tissues and several normal cell lines. We confirmed the mRNA expression of "clone 47" was up-regulation for 0.5~1hr of WI-38 cell differentiation. CONCLUSION: The novel gene, "Clone 47" is upregulated in glioblastoma tissue and several cancer cell lines. This gene is time dependent activation during time course of serum stimulation. This result suggests that "clone 47" play a role in brain tumorigenesis and the activation of this "clone 47" may be necessary for the development of cancer.


Subject(s)
Humans , Brain , Carcinogenesis , Cell Cycle Checkpoints , Cell Differentiation , Cell Line , Clone Cells , DNA, Complementary , Glioblastoma , RNA, Messenger , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL