Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Clinical Pharmacology and Therapeutics ; (12): 241-248, 2023.
Article in Chinese | WPRIM | ID: wpr-1014665

ABSTRACT

AIM: To investigate the regulatory effects of silybin on hepatic lipid metabolism in mice with non -alcoholic steatohepatitis (NASH) induced by high - fat and high-cholesterol (HFHD) diet. METHODS: Mice were fed a HFHD diet to construct a NASH model, and serum levels of triacylglycerol (TAG), total cholesterol (T-CHO), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured using biochemical kits. H&E staining and oil red O staining were used to detect histopathological changes in the liver. Lipidomics was used to detect the alterations of hepatic lipid metabolism in NASH mice. RESULTS: Silybin significantly inhibited the increase of body weight, liver weight and abdominal fat, decreased serum T-CHO, TAG and LDL-C levels, improved hepatic lipid droplet accumulation and ballooning degeneration, and back-regulated hepatic palmitoleic acid (C16: 1) and polyunsaturated long-chain fatty acids (PUFAs) in NASH mice. CONCLUSION: Silybin possibly reduced hepatic lipid accumulation and lipotoxicity by modulating abnormal hepatic lipid metabolism in mice induced by HFHC diet.

2.
Journal of China Pharmaceutical University ; (6): 156-163, 2022.
Article in Chinese | WPRIM | ID: wpr-923490

ABSTRACT

@#The development of living cell drugs and their successful application in clinical treatments require full clarification of the fate of cells after transplantation, which is critical to the safety and efficacy of living cell drugs.In order to solve this problem, cell imaging technology has come into our sight, and the use of visualization technology for non-invasive tracing of living cell drugs could reveal the distribution, homing and activity of living cell drugs in the body, which helps to determine the best number of transplanted cells, optimize the administration scheme, improve the transplantation efficiency, enhance the targeting of transplanted cells, and reduce the potential off-target accumulation risk.This paper summarizes the research advances of non-invasive visual tracing in vivo for living cell drugs from the perspectives of radionuclide imaging, magnetic resonance imaging, magnetic particle imaging, computed tomography imaging, fluorescence imaging and multimodal imaging.The aim is to obtain the biological behavior of living cell drugs in vivo with the application of appropriate contrast agent and tracing technology, and provide a more reasonable scientific basis for the research and development of living cell drugs and their transplantation therapy.

SELECTION OF CITATIONS
SEARCH DETAIL