Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 38(7)July 2005. tab, graf
Article in English | LILACS | ID: lil-403859

ABSTRACT

The objective of the present study was to determine if treatment of diabetic rats with D-alpha-tocopherol could prevent the changes in glomerular and tubular function commonly observed in this disease. Sixty male Wistar rats divided into four groups were studied: control (C), control treated with D-alpha-tocopherol (C + T), diabetic (D), and diabetic treated with D-alpha-tocopherol (D + T). Treatment with D-alpha-tocopherol (40 mg/kg every other day, ip) was started three days after diabetes induction with streptozotocin (60 mg/kg, ip). Renal function studies and microperfusion measurements were performed 30 days after diabetes induction and the kidneys were removed for morphometric analyses. Data are reported as means ± SEM. Glomerular filtration rate increased in D rats but decreased in D + T rats (C: 6.43 ± 0.21; D: 7.74 ± 0.45; D + T: 3.86 ± 0.18 ml min-1 kg-1). Alterations of tubular acidification observed in bicarbonate absorption flux (JHCO3) and in acidification half-time (t/2) in group D were reversed in group D + T (JHCO3, C: 2.30 ± 0.10; D: 3.28 ± 0.22; D + T: 1.87 ± 0.08 nmol cm-2 s-1; t/2, C: 4.75 ± 0.20; D: 3.52 ± 0.15; D + T: 5.92 ± 0.19 s). Glomerular area was significantly increased in D, while D + T rats exhibited values similar to C, suggesting that the vitamin prevented the hypertrophic effect of hyperglycemia (C: 8334.21 ± 112.05; D: 10,217.55 ± 100.66; D + T: 8478.21 ± 119.81æm²). These results suggest that D-alpha-tocopherol is able to protect rats, at least in part, from the harmful effects of diabetes on renal function.


Subject(s)
Animals , Male , Rats , Acidosis, Renal Tubular/prevention & control , Antioxidants/pharmacology , Diabetes Mellitus, Experimental/urine , Diabetic Nephropathies/prevention & control , Nephrons/drug effects , alpha-Tocopherol/pharmacology , Glomerular Filtration Rate , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Nephrons/metabolism , Rats, Wistar
2.
Braz. j. med. biol. res ; 34(2): 265-269, Feb. 2001.
Article in English | LILACS | ID: lil-281606

ABSTRACT

Normal aging is accompanied by renal functional and morphological deterioration and dietetic manipulation has been used to delay this age-related decline. We examined the effects of chronic administration of diets containing 5 percent lipid-enriched diet (LD, w/w) on renal function of rats at different ages. Three types of LD were tested: canola oil, fish oil and butter. Mean systemic tail-cuff blood pressure and glycemia remained within the normal range whatever the age and the diet of the animals. Proteinuria began to rise from the 8th month in the groups ingesting LD, while in the control group it increased significantly (above 10 mg/24 h) only after the 10th month. With age, a significant and progressive decline in glomerular filtration rate (GFR) and renal plasma flow was observed in the LD groups but after 6 months of lipid supplementation, the decline in these parameters was more marked in the butter and fish oil groups. By the 18th month, the lowest GFR level was observed in the group ingesting the butter diet (2.93 + or - 0.22 vs 5.01 + or - 0.21 ml min-1 kg-1 in control, P<0.05). Net acid excretion, evaluated in 9- and 18-month-old rats, was stimulated in the fish oil group when compared both to control and to the other two LD groups. These results suggest that even low levels of LD in a chronic nutritional regimen can modify the age-related changes in renal function and that the impact of different types of lipid-supplemented diets on renal function depends on the kind of lipid present in the diet


Subject(s)
Animals , Rats , Kidney/physiology , Lipids/administration & dosage , Age Factors , Analysis of Variance , Dietary Fats/administration & dosage , Glomerular Filtration Rate/drug effects , Kidney/drug effects , Kidney/metabolism , Rats, Wistar , Renal Plasma Flow/drug effects
3.
Braz. j. med. biol. res ; 32(1): 107-13, Jan. 1999. tab
Article in English | LILACS | ID: lil-226220

ABSTRACT

In previous studies we have shown stimulation of renal acid excretion in the proximal tubules of rats with diabetes of short duration, with no important alterations in glomerular hemodynamics; on the other hand, in thyroparathyroidectomized rats (TPTX model), a significant decrease in renal acid excretion, glomerular filtration rate (GFR) and renal plasma flow (RPF) was detected. Since important changes in the parathyroid hormone-vitamin D-Ca axis are observed in the diabetic state, the present study was undertaken to investigate the renal repercussions of thyroparathyroidectomy in rats previously made diabetic by streptozotocin (45 mg/kg). Four to 6 days after the induction of diabetes (DM), a group of rats were thyroparathyroidectomized (DM + TPTX). Renal functional parameters were evaluated by measuring the inulin and sodium para-aminohippurate clearance on the tenth day. The decrease in the GFR and RPF observed in TPTX was not reversed by diabetes since the same alterations were observed in DM + TPTX. Net acid (NA) excretion was unchanged in DM (6.19 ± 0.54), decreased in TPTX (3.76 ± 0.25) and returned to normal levels in DM + TPTX (5.54 ± 0.72) when compared to the control group (6.34 ± 0.14 µmol min-1 kg-1). The results suggest that PTH plays an important vasodilator role regarding glomerular hemodynamics, since in its absence the impairment in GFR and RPF was not reversed by the diabetic state. However, with respect to acid excretion, the presence of diabetes was able to overcome the negative stimulus represented by TPTX


Subject(s)
Rats , Animals , Male , Acids/urine , Diabetes Mellitus, Experimental/urine , Parathyroidectomy , Thyroidectomy , Acidosis, Renal Tubular/metabolism , Disease Models, Animal , Glomerular Filtration Rate , Rats, Wistar , Renal Plasma Flow/physiology , Streptozocin
4.
Braz. j. med. biol. res ; 30(4): 471-7, Apr. 1997. graf
Article in English | LILACS | ID: lil-191385

ABSTRACT

In order to examine the effects and the interaction of angiotensin II (ANG II, 1 pM) and atrial natriuretic peptide (ANP, 1 muM) on the kinetics of bicarbonate reabsorption in the rat middle proximal tubule, we performed in vivo experiments using a stopped-flow microperfusion technique with the determination of lumen pH by Sb microelectrodes. These studies confirmed that ANG II added to the luminal or peritubular capillary perfusion fluid stimulates proximal bicarbonate reabsorption and showed that ANP alone does not affect this process, but impairs the stimulation caused by ANG II. We also studied the effects and the interation of these hormones in cortical distal nephron acidification. Bicarbonate reabsorption was evaluated by the acidification kinetic technique in early (ED) and late (LD) distal tubules in rats during in vivo stopped-flow microperfusion experiments. the intratubular pH was measured with a double-barreled microelectrode with H+ -sensitive resin. The results indicate that ANG II acted by stimulating Na+/H+ exchange in ED (81 per cent) and LD (54 per cent)segments via activation of AT1 receptors, as well as vacuolar H+ -ATPase in LD segments (33 per cent). ANP did not affect bicarbonate reabsorption in either segment and, as opposed to what was seen in the proximal tubule, did not impair the stimulation caused by ANG II. To investigate the mechanism of faction of these hormones in more detail, we studied cell pH dependence on ANG II and ANP in MDCK cells using the fluroescent probe BCECF. We showed that the velocity of cell pH recovery was almost abolished in the absence of Na+, indicating that it is dependent on Na+/H+ exchange. ANP (1 muM) alone had no effect on this recovery but reversed both the acceleration of H+ extrusion at low ANG II levels (1 pM and 1 nM), and inhibition of H+ extrusion at higher ANG II levels (100 nM). To obtain more information on the mechanism of interation of these hormones, we also studied their effects on the regulation of intracellular free calcium concentration, [Ca2+]i, monitored with the fluorescent probe Fura-2 in MDCK cells in suspension. The data indicate that the addition of increasing concentrations of ANG II (1 pM to 1 muM) to the cell suspension led to a progressive increase in [Ca2+]i to 2-3 times the basal level.In contrast, the addition of ANP (1 muM) to the cell suspension led to a very rapid 60 per cent decrease in [Ca2+]i and reduced the increase elicited by ANG II, thus modulating the effect of ANG II on [Ca2+]i. These results may indicate a role of [Ca2+)i in the regulation of the H+ extrusion process mediated by Na+/H+ exchange and stimulated/impaired by ANG II. The data are compatible with stimulation of Na+/H+ exchange by increases of [Ca2+]i in the lower range, and inhibition at high [Ca2+]i levels.


Subject(s)
Animals , Rats , Angiotensin II/physiology , Atrial Natriuretic Factor/physiology , Bicarbonates/metabolism , Calcium/metabolism , Hydrogen-Ion Concentration , In Vitro Techniques , Nephrons/metabolism , Kidney/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL