ABSTRACT
O estudo busca identificar padrões de características materno-fetais na predição da mortalidade infantil, por meio da incorporação de técnicas inovadoras, como a Mineração de Dados, que se mostram relevantes em Saúde Pública. Foi elaborada uma base de dados, com óbitos infantis analisados pelos Comitês de Prevenção da Mortalidade Infantil de 2000 a 2004, a partir da integração dos Sistemas de Informações de Nascidos Vivos, da Mortalidade e da Investigação da Mortalidade Infantil no Estado do Paraná. O programa da mineração foi o WEKA, de uso livre. A mineração faz busca em banco de dados e fornece regras que devem ser analisadas para transformação em informação útil. Após a mineração, selecionaram-se 4.230 regras, por exemplo: mãe adolescente e peso ao nascer < 2.500g, ou parto pós-termo e mãe adolescente com outro filho, ou com afecções maternas, aumentam o risco para óbito neonatal. Vê-se a necessidade de estabelecer maior atenção às adolescentes, às crianças com peso ao nascer < 2.500g, pós-termo e filhas de mães com afecções maternas, confirmando resultados de outros estudos.
This study aims to identify patterns in maternal and fetal characteristics in the prediction of infant mortality by incorporating innovative techniques like data mining, with proven relevance for public health. A database was developed with infant deaths from 2000 to 2004 analyzed by the Committees for the Prevention of Infant Mortality, based on integration of the Information System on Live Births (SINASC), Mortality Information System, and Investigation of Infant Mortality in the State of Paraná. The data mining software was WEKA (open source). The data mining conducts a database search and provides rules to be analyzed to transform the data into useful information. After mining, 4,230 rules were selected: teenage pregnancy plus birth weight < 2,500g, or post-term birth plus teenage mother with a previous child or intercurrent conditions increase the risk of neonatal death. The results highlight the need for greater attention to teenage mothers, newborns with birth weight < 2,500g, post-term neonates, and infants of mothers with intercurrent conditions, thus corroborating other studies.
Subject(s)
Adolescent , Female , Humans , Infant , Pregnancy , Data Mining/standards , Infant Mortality , Birth Weight , Pregnancy in Adolescence , Risk Factors , SoftwareABSTRACT
Apresenta-se um sistema baseado em conhecimentos, para auxiliar no diagnóstico clínico das crises epilépticas, tendo como modêlo a classificação por tipo de crise da International League against Epilepsia. O objetivo do sistema é obter um conjunto de sintomas apresentado pelo paciente, classificar o tipo de crise e indicar o provável diagnóstico...
Subject(s)
Humans , Epilepsy/diagnosis , Artificial Intelligence , Epilepsy/classification , Medical Informatics Applications , Diagnosis, Computer-AssistedABSTRACT
Os recentes avanços da Informática na área de multimídia permitem visualizar um novo o profícuo campo de pesquisa: a integração destes recursos aos sistemas ICAI. Sabidamente o poder de transmissão do conhecimento por meio de imagens e sons é por vezes superior aos tradicionais métodos de leitura. Considera-se que a integração destes novos meios permitirá um salto qualitativo importante no desenvolvimento dos sistemas ICAI, especialmente em determinadas áreas do conhecimento em que imagem e som são de reconhecida importância. Pode-se citar como uma destas áreas o ensino do diagnóstico médico a partir de imagens (EEG, ECG, ultrasons, etc), considerada como a motivação principal deste trabalho. O projeto pretende fornecer um sistema capaz de integrar o usuário a um meio que permita, por exemplo, auxiliar no aprendizado da cardiologia, fazendo com que este aprendizado seja o mais próximo possível de um tutor real. Para isto utilizará técnicas de inteligência artificial, sistemas distribuídos e multimídia.