Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 37(10): 1525-1530, Oct. 2004. tab
Article in English | LILACS | ID: lil-383024

ABSTRACT

Because thalidomide and pentoxifylline inhibit the synthesis and release of tumor necrosis factor-alpha (TNF-alpha), we determined the effect of these drugs on the renal damage induced by supernatants of macrophages activated with Crotalus durissus cascavella venom in order to identify the role of TNF-alpha in the process. Rat peritoneal macrophages were collected with RPMI medium and stimulated in vitro with C.d. cascavella venom (10 µg/ml) in the absence and presence of thalidomide (15 µM) or pentoxifylline (500 µM) for 1 h and washed and kept in culture for 2 h. Supernatant (1 ml) was tested on an isolated perfused rat kidney (N = 6 for each group). The first 30 min of each experiment were used as control. The supernatant was added to the perfusion system. All experiments lasted 120 min. The toxic effect of the preparation of venom-stimulated macrophages on renal parameters was determined. At 120 min, thalidomide (Thalid) and pentoxifylline (Ptx) inhibited (P < 0.05) the increase in perfusion pressure caused by the venom (control = 114.0 ± 1.3; venom = 137.1 ± 1.5; Thalid = 121.0 ± 2.5; Ptx = 121.4 ± 4.0 mmHg), renal vascular resistance (control = 4.5 ± 0.2; venom = 7.3 ± 0.6; Thalid = 4.5 ± 0.9; Ptx = 4.8 ± 0.6 mmHg/ml g-1 min-1), urinary flow (control = 0.23 ± 0.001; venom = 0.44 ± 0.01; Thalid = 0.22 ± 0.007; Ptx = 0.21 ± 0.009 ml g-1 min-1), glomerular filtration rate (control = 0.72 ± 0.06; venom = 1.91 ± 0.11; Thalid = 0.75 ± 0.04; Ptx = 0.77 ± 0.05 ml g-1 min-1) and the decrease in percent tubular sodium transport (control = 77.0 ± 0.9; venom = 73.9 ± 0.66; Thalid = 76.6 ± 1.1; Ptx = 81.8 ± 2.0 percent), percent tubular chloride transport (control = 77.1 ± 1.2; venom = 71.4 ± 1.1; Thalid = 77.6 ± 1.7; Ptx = 76.8 ± 1.2 percent), and percent tubular potassium transport (control = 72.7 ± 1.1; venom = 63.0 ± 1.1; Thalid = 72.6 ± 1.0; Ptx = 74.8 ± 1.0 percent), 30 min before and during the stimulation of macrophages with C.d. cascavella venom. These data suggest the participation of TNF-alpha in the renal effects induced by supernatant of macrophages activated with C.d. cascavella venom.


Subject(s)
Animals , Male , Female , Rats , Crotalid Venoms , Immunosuppressive Agents , Pentoxifylline , Thalidomide , Tumor Necrosis Factor-alpha , Kidney , Macrophage Activation , Macrophages, Peritoneal , Rats, Wistar
2.
Braz. j. med. biol. res ; 32(8): 985-8, Aug. 1999. tab
Article in English | LILACS | ID: lil-238967

ABSTRACT

Microcystin is a hepatotoxic peptide which inhibits protein phosphatase types 1 and 2A. The objective of the present study was to evaluate the physiopathologic effects of microcystin-LR in isolated perfused rat kidney. Adult Wistar rats (N = 5) of both sexes (240-280 g) were utilized. Microcystin-LR (1 µg/ml) was perfused over a period of 120 min, during which samples of urine and perfusate were collected at 10-min intervals to determine the levels of inulin, sodium, potassium and osmolality. We observed a significant increase in urinary flow with a peak effect at 90 min (control (C) = 0.20 + or- 0.01 and treated (T) = 0.32 + or - 0.01 ml g-1 min(-1), P<0.05). At 90 min there was a significant increase in perfusate pressure (C = 129.7 + or - 4.81 and T = 175.0 + or - 1.15 mmHg) and glomerular filtration rate (C = 0.66 + or - 0.07 and T = 1.10 + or - 0.04 ml g-1 min(-1) and there was a significant reduction in fractional sodium tubular transport at 120 min (C = 78.6 + or - 0.98 and T = 73.9 + or - 0.95 percent). Histopathologic analysis of the perfused kidneys showed protein material in the urinary space, suggestive of renal toxicity. These data demonstrate renal vascular, glomerular and urinary effects of microcystin-LR, indicating that microcystin acts directly on the kidney by probable inhibition of protein phosphatases


Subject(s)
Rats , Animals , Female , Bacterial Toxins/toxicity , Enzyme Inhibitors/toxicity , Kidney/drug effects , Peptides, Cyclic/toxicity , Bacterial Toxins/isolation & purification , Kidney Diseases/metabolism , Kidney/enzymology , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL