Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Korean Journal of Orthodontics ; : 228-239, 2008.
Article in Korean | WPRIM | ID: wpr-647355

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. METHODS: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. RESULTS: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. CONCLUSIONS: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.


Subject(s)
Animal Experimentation , Bone Remodeling , Finite Element Analysis , Sprains and Strains , Tibia , Torque
SELECTION OF CITATIONS
SEARCH DETAIL