Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 22(4): 861-867, jul.-ago. 2012. ilus, tab
Article in English | LILACS | ID: lil-640348

ABSTRACT

About 80% of the human adult population is infected with HSV-1. Although there are many anti-HSV-1 drugs available (acyclovir, ganciclovir, valaciclovir, foscarnet), their continuous use promotes the selection of resistant strains, mainly in ACV patients. In addition to resistance, the drugs also have toxicity, particularly when administration is prolonged. The study of new molecules isolated from green algae with potential antiviral activity represents a good opportunity for the development of antiviral drugs. Caulerpin, the major product from the marine algae Caulerpa Lamouroux (Caulerpales), is known for its biological activities such as antioxidant, antifungal, acetylcholinesterase inhibitor (AChE) and antibacterial activity. In this work, we show that caulerpin could be an alternative to acyclovir as an anti-HSV-1 drug that inhibits the alpha and beta phases of the replication cycle.

2.
Rev. bras. farmacogn ; 22(4): 881-888, jul.-ago. 2012. ilus
Article in English | LILACS | ID: lil-640356

ABSTRACT

HIV-1 reverse transcriptase (HIV-1 RT) is a therapeutic target for the treatment of HIV-positive individuals or those already showing AIDS symptoms. In this perspective, the identification of new inhibitors for this enzyme is of great importance in view of the growing viral resistance to the existing treatments. This resistance has compromised the quality of life of those infected with multidrug-resistant strains, whose treatment options are already limited, putting at risk these individuals lives. The literature has recognized marine organisms and their products as natural sources for the identification of new therapeutic options for different pathologies. In this brief review, we consider the structure of HIV-1 RT and its most common inhibitors, as well as some marine diterpenes originally reported as HIV-1 RT inhibitors to encourage the identification and development of new marine antiviral prototypes.

SELECTION OF CITATIONS
SEARCH DETAIL