Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Indian J Exp Biol ; 2006 May; 44(5): 408-15
Article in English | IMSEAR | ID: sea-61656

ABSTRACT

Wheat (Triticum aestivum L. var. DL 1266-5), sunflower (Helianthus annuus L. var. MSFH 17) and mungbean [Vigna radiata (L.) Wilczek var. P 9072] were grown in field under atmospheric (360 +/- 10 cm3 m(-3), AC) and elevated (650 +/- 50 cm3 m(-3), EC) CO2 concentrations in open top chambers for entire period of growth and development. Photosynthetic acclimation to elevated CO2 was examined by comparing photosynthesis rate (Pn), Pn/Ci curves, leaf contents of RuBP carboxylase/oxygenase (Rubisco), change in the transcripts of Rubisco small subunit (SSU) gene and leaf carbohydrate constituents in AC and EC grown plants. The study indicated that photosynthetic acclimation to elevated CO2 concentration in wheat occurred because of down regulation of Rubisco, through limitation imposed on Rubisco SSU gene expression, as a consequence of sugar accumulation in the leaves. Leaf starch accumulators, sunflower and mungbean, showed no down regulation of Pn under EC. The Rubisco contents (%) in leaf soluble protein and rbcS transcript levels were not significantly affected in EC plants compared to AC plants of sunflower and mungbean. The study indicated that accumulation of excess assimilates in the leaves as starch was less inhibitory to Pn and would, therefore, be an important trait for sustenance of Pn not only under EC, but also under AC, where Pn inhibited by end products.


Subject(s)
Carbon Dioxide/metabolism , Fabaceae/enzymology , Gene Expression , Helianthus/enzymology , Photosynthesis , Ribulose-Bisphosphate Carboxylase/genetics , Triticum/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL