Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Year range
1.
J Biosci ; 2020 Jan; : 1-13
Article | IMSEAR | ID: sea-214356

ABSTRACT

Malaria is a deadly, infectious disease caused by the parasite Plasmodium, leading to millions of deathsworldwide. Plasmodium requires a coordinated pattern of sequential gene expression for surviving in bothinvertebrate and vertebrate host environments. As parasites largely depend on host resources, they also developefficient mechanisms to sense and adapt to variable nutrient conditions in the environment and modulate theirvirulence. Earlier we have shown that PfGCN5, a histone acetyltransferase, binds to the stress-responsive andvirulence-related genes in a poised state and regulates their expression under temperature and artemisinintreatment conditions in P. falciparum. In this study, we show upregulation of PfGCN5 upon nutrient stresscondition. With the help of chromatin immunoprecipitation coupled high-throughput sequencing (ChIP-seq)and transcriptomic (RNA-sequencing) analyses, we show that PfGCN5 is associated with the genes that areimportant for the maintenance of parasite cellular homeostasis upon nutrient stress condition. Furthermore, weidentified various metabolic enzymes as interacting partners of PfGCN5 by immunoprecipitation coupled withmass spectroscopy, possibly acting as a sensor of nutrient conditions in the environment. We also demonstratedthat PfGCN5 interacts and acetylates PfGAPDH in vitro. Collectively, our data provides important insights intotranscriptional deregulation upon nutrient stress condition and elucidate the role of PfGCN5 during nutrientstress condition.

SELECTION OF CITATIONS
SEARCH DETAIL