Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
J Vector Borne Dis ; 2009 Jun; 46(2): 125-135
Article in English | IMSEAR | ID: sea-142673

ABSTRACT

Background & objectives: The sensilla and sensory mechanism play a significant role in hostseeking and oviposition behaviour of mosquitoes, which enable them to transmit various diseases to humans. Aedes albopictus (Skuse) has emerged as a major vector of Chikungunya virus in the recent epidemics in most parts of southern India. Studies on the sensory structures of dengue vector, Aedes aegypti (Linn) are comprehensive; whereas information on the sensillary systems of Asian tiger mosquito, Ae. albopictus is inadequate. Therefore, the present study has been carried out to observe various types of sensilla located on the antenna, maxillary palp, labial palp, tarsi and ovipositor of Ae. albopictus using scanning electron microscopy. Methods: The antennae, maxillary palpi, labellum, tarsi and ovipositor of 10 different female mosquito of Ae. albopictus were fixed individually in 2.5% glutaraldehyde solution, washed twice and dehydrated with ascending grades of ethanol. Samples were cleared with xylene, air-dried, mounted on stubs, gold coated in an ion-sputtering unit and the sensilla were viewed between 5 and 10 KV using FEI-Quanta 400–EDAX scanning electron microscope. ANOVA revealed significant differences in the morphometric features of various sensilla. Results: In the antenna Sensilla trichoidea are numerously distributed in all flagellar segments revealed four distinct subtypes. Two types of grooved peg sensilla were observed. Sensilla coeloconica was observed in the terminal flagellum of antenna and tarsomeres with large variation in diameter. Sensilla chaetica are distributed throughout the body and revealed greater variation in morphology and morphometric parameters. Interpretation & conclusion: The significant difference among various types of sensilla would possibly reveal their functions. The porous sensilla are olfactory and contact chemoreceptors while the aporous sensilla would play the role of mechanoreception. Sensilla coeloconica on the antenna, tarsus showed major differences with Ae. aegypti. The ovipositor sensilla revealed three types of chaetica arranged in rows but has not been reported earlier with other mosquito species.

2.
Mem. Inst. Oswaldo Cruz ; 99(2): 205-210, Mar. 2004. tab, graf
Article in English | LILACS | ID: lil-360977

ABSTRACT

The molluscicidal effect of nicotinanilide was evaluated and compared with niclosamide (2',5-dichloro-4'-nitrosalicylanilide, ethanolamide salt) against different stages of the freshwater snail Lymnaea luteola i.e., eggs, immature, young mature, and adults. Calculated values of lethal concentrations (LC50 and LC90 ) showed that both nicotinanilide and niclosamide as toxic against eggs, immature, and adults. The young mature stage of the snails was comparatively more tolerant to both molluscicides than the other stages. The toxicity of the intermediate compounds of nicotinanilide against the young mature stage of the snails showed them as ineffective. The mortality pattern of the snails exposed to LC90 concentration of these molluscicides showed niclosamide to kill faster (within 8 to 9 h) than nicotinanilide (26 to 28 h). In view of the above studies it may be concluded that both molluscicides are toxic against all the stages of the L. luteola snails.


Subject(s)
Animals , Disease Vectors , Lymnaea , Molluscacides , Niclosamide , Fresh Water , Toxicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL