Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Mem. Inst. Oswaldo Cruz ; 113(5): e170404, 2018. graf
Article in English | LILACS | ID: biblio-894928

ABSTRACT

BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins.


Subject(s)
Humans , Sequence Analysis, RNA , Transcriptome/genetics , Axenic Culture , Life Cycle Stages/genetics
2.
Mem. Inst. Oswaldo Cruz ; 112(5): 339-347, May 2017. tab, graf
Article in English | LILACS | ID: biblio-841791

ABSTRACT

BACKGROUND Real-time reverse transcription polymerase chain reaction (RT-PCR) is routinely used to detect viral infections. In Brazil, it is mandatory the use of nucleic acid tests to detect hepatitis C virus (HCV), hepatitis B virus and human immunodeficiency virus in blood banks because of the immunological window. The use of an internal control (IC) is necessary to differentiate the true negative results from those consequent from a failure in some step of the nucleic acid test. OBJECTIVES The aim of this study was the construction of virus-modified particles, based on MS2 bacteriophage, to be used as IC for the diagnosis of RNA viruses. METHODS The MS2 genome was cloned into the pET47b(+) plasmid, generating pET47b(+)-MS2. MS2-like particles were produced through the synthesis of MS2 RNA genome by T7 RNA polymerase. These particles were used as non-competitive IC in assays for RNA virus diagnostics. In addition, a competitive control for HCV diagnosis was developed by cloning a mutated HCV sequence into the MS2 replicase gene of pET47b(+)-MS2, which produces a non-propagating MS2 particle. The utility of MS2-like particles as IC was evaluated in a one-step format multiplex real-time RT-PCR for HCV detection. FINDINGS We demonstrated that both competitive and non-competitive IC could be successfully used to monitor the HCV amplification performance, including the extraction, reverse transcription, amplification and detection steps, without compromising the detection of samples with low target concentrations. In conclusion, MS2-like particles generated by this strategy proved to be useful IC for RNA virus diagnosis, with advantage that they are produced by a low cost protocol. An attractive feature of this system is that it allows the construction of a multicontrol by the insertion of sequences from more than one pathogen, increasing its applicability for diagnosing different RNA viruses.


Subject(s)
RNA Viruses/genetics , Hepatitis C/diagnosis , Hepacivirus/genetics , Escherichia coli/genetics , Real-Time Polymerase Chain Reaction/methods , Levivirus/genetics , Models, Biological
3.
Mem. Inst. Oswaldo Cruz ; 107(6): 790-799, set. 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-649496

ABSTRACT

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.


Subject(s)
DNA-Binding Proteins/metabolism , Protozoan Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Trypanosoma cruzi/metabolism , Gene Expression Regulation, Developmental , RNA Stability , Trypanosoma cruzi/growth & development
4.
Mem. Inst. Oswaldo Cruz ; 106(1): 70-77, Feb. 2011. ilus, graf
Article in English | LILACS | ID: lil-578820

ABSTRACT

The life cycle of the protozoan Trypanosoma cruzi exposes it to several environmental stresses in its invertebrate and vertebrate hosts. Stress conditions are involved in parasite differentiation, but little is known about the stress response proteins involved. We report here the first characterization of stress-induced protein-1 (STI-1) in T. cruzi (TcSTI-1). This co-chaperone is produced in response to stress and mediates the formation of a complex between the stress proteins HSP70 and HSP90 in other organisms. Despite the similarity of TcSTI-1 to STI-1 proteins in other organisms, its expression profile in response to various stress conditions, such as heat shock, acidic pH or nutrient starvation, is quite different. Neither polysomal mRNA nor protein levels changed in exponentially growing epimastigotes cultured under any of the stress conditions studied. Increased levels of TcSTI-1 were observed in epimastigotes subjected to nutritional stress in the late growth phase. Co-immunoprecipitation assays revealed an association between TcSTI-1 and TcHSP70 in T. cruzi epimastigotes. Immunolocalization demonstrated that TcSTI-1 was distributed throughout the cytoplasm and there was some colocalization of TcSTI-1 and TcHSP70 around the nucleus. Thus, TcSTI-1 associates with TcHSP70 and TcSTI-1 expression is induced when the parasites are subjected to stress conditions during specific growth phase.


Subject(s)
Heat-Shock Proteins , Trypanosoma cruzi , Cell Nucleus , Cytoplasm , Fluorescent Antibody Technique , HSP90 Heat-Shock Proteins , HSP90 Heat-Shock Proteins , Heat-Shock Proteins , Immunoprecipitation
SELECTION OF CITATIONS
SEARCH DETAIL