Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 5839-5847, 2021.
Article in Chinese | WPRIM | ID: wpr-921704

ABSTRACT

The present study evaluates different processing and drying methods and investigates their effects on the chemical components in Paeoniae Radix Alba via content determination. The fresh medicinal materials of Paeoniae Radix Alba collected from Bozhou of Anhui province were processed(boiled and peeled) and dried(hot air-dried, infrared-dried, and microwave-dried) at different temperatures(40, 50, 60 and 70 ℃), and the 11 components(monoterpene glycosides, polyphenols, tannin, and benzoic acid) in Paeoniae Radix Alba were determined by ultra-performance liquid chromatography coupled to triple quadrupole with electrospray tandem mass spectrometry(UPLC-TQ-MS). Then the compounds in processed and dried samples were analyzed by partial least squares discriminant analysis(PLS-DA) and orthogonal partial least squares discriminant analysis(OPLS-DA), and the contribution rates of differential components were evaluated by variable important in projection(VIP). The results indicated that the samples obtained by different processing and drying methods could be distinguished. Albiflorin, gallic acid, 1,2,3,4,6-pentakis-O-galloyl-β-D-glucose, and benzoic acid were the common differential components in boiled Paeoniae Radix Alba. Benzoic acid was the common differential component in peeled Paeoniae Radix Alba. Gallic acid was the common differential component in Paeoniae Radix Alba dried by different methods. The samples could not be distinguished after drying at different temperatures due to the lack of common differential components. This study is expected to provide a reference for the selection of processing and drying methods and the optimization of processing parameters.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Paeonia , Plant Extracts , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL