Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
2.
Mem. Inst. Oswaldo Cruz ; 105(6): 834-837, Sept. 2010. graf
Article in English | LILACS | ID: lil-560672

ABSTRACT

We have previously demonstrated selection favoring the JG strain of Trypanosoma cruziin hearts of BALB/c mice that were chronically infected with an equal mixture of the monoclonal JG strain and a clone of the Colombian strain, Col1.7G2. To evaluate whether cell invasion efficiency drives this selection, we infected primary cultures of BALB/c cardiomyocytes using these same T. cruzi populations. Contrary to expectation, Col1.7G2 parasites invaded heart cell cultures in higher numbers than JG parasites; however, intracellular multiplication of JG parasites was more efficient than that of Col1.7G2 parasites. This phenomenon was only observed for cardiomyocytes and not for cultured Vero cells. Double infections (Col1.7G2 + JG) showed similar results. Even though invasion might influence tissue selection, our data strongly suggest that intracellular development is important to determine parasite tissue tropism.


Subject(s)
Animals , Female , Mice , Host-Parasite Interactions , Myocytes, Cardiac , Tropism/physiology , Trypanosoma cruzi/growth & development , Mice, Inbred BALB C , Mice, Inbred DBA , Time Factors , Trypanosoma cruzi , Trypanosoma cruzi
3.
Mem. Inst. Oswaldo Cruz ; 96(3): 407-413, Apr. 2001. ilus, tab
Article in English | LILACS | ID: lil-282855

ABSTRACT

Through microsatellite analysis of 53 monoclonal populations of Trypanosoma cruzi, we found a remarkable degree of genetic polymorphism with no single multilocus genotype being observed more than once. The microsatellite profile proved to be stable during 70 generations of the CL Brener clone in culture. The microsatellite profiling presented also high diagnostic sensitivity since DNA amplifications could be achieved with less than 100 fg DNA, corresponding to half parasite total DNA content. Based on these technical attributes the microsatellite assay turns out to be an important tool for direct typing T. cruzi in biological samples. By using this approach we were able to type T. cruzi in feces of artificially infected bugs and in single cells sorted by FACS. The microsatellites have shown to be excellent markers for T. cruzi phylogenetic reconstruction. We used maximum parsimony based on the minimum number of mutational steps to build an unrooted Wagner network, which confirms previous conclusions based on the analysis of the D7 domain of the LSU rDNA gene that T. cruzi is composed by two major groups. We also obtained evidence that strains belonging to rRNA group 2 are subdivided into two genetically distant clusters, and that one of these clusters is more related to rRNA group 1/2. These results suggest different origins for these strains


Subject(s)
Animals , Humans , Microsatellite Repeats , Trypanosoma cruzi/genetics , DNA, Protozoan/analysis , DNA, Protozoan/genetics , Genotype , Nucleic Acid Amplification Techniques , Phylogeny , Polymerase Chain Reaction , Polymorphism, Genetic/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL