Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biotechnology ; (12): 1937-1942, 2008.
Article in Chinese | WPRIM | ID: wpr-302888

ABSTRACT

Astaxanthin is a useful pigmentation source in fish aquaculture. It has strong antioxidative activity and therefore has potential application in delaying aging and degenerative diseases in human and animals. In recent years, there is a growing demand for astaxanthin. The red yeast Xanthophyllomyces dendrorhous (called Phaffia rhodozyma before) is one of the most promising microorganisms for the commercial production of astaxanthin. During fermentation, X. dendrorhous shows the Crabtree effect. Higher glucose concentration will cause significant reductions in biomass and astaxanthin production. Therefore, fed-batch processes are particularly useful. In this paper, effects of glucose-feeding strategies on astaxanthin production by X. dendrorhous were studied. Based on the substrate inhibition model, an optimized two-stage feeding strategy for astaxanthin production of high-cell-density fermentation was proposed. Glucose concentration was first controlled at about 25 g/L during the lag phase and the early exponential phase. In such case, biomass could reach its maximum value in relatively short time. Then the glucose concentration was controlled at about 5 g/L in the later exponential phase and stationary phase. The synthesis of astaxanthin could be effectively prolonged. The results showed that the optimized two-stage feeding strategy was the best among all the feeding strategies, and could obtain the highest biomass (23.8 g/L) and astaxanthin production (29.05 mg/L), which was a significant increase (52.8% and 109% respectively) compared with a batch process.


Subject(s)
Basidiomycota , Metabolism , Fermentation , Kinetics , Models, Biological , Xanthophylls
2.
Progress in Modern Biomedicine ; (24): 102-105, 2006.
Article in Chinese | WPRIM | ID: wpr-499134

ABSTRACT

The culture of Magnetospirillum magneticum WM-1 depends on several control factors that have great effect on the magnetic cells concentration. Investigation into the optimal culture conditions needs a large number of experiments. So it is desirable to minimize the number of experiments and maximize the information gained from them. The orthogonal design of experiments and mathematical statistical method are considered as effective methods to optimize the culture condition of magnetotactic bacteria WM-1 for high magnetic cells concentration. The effects of the four factors, such as pH value of medium, oxygen concentration of gas phase in the serum bottle, C:C (mtartaric acid: msuccinic acid) ratio and NaNO3 concentration, are simultaneously investigated by only sixteen experiments through the orthogonal design L16(44) method. The optimal culture condition is obtained. At the optimal culture condition (pH 7.0, a oxygen concentration 4.0%, C: C (mtartaric acid: msuccinic acid) ratio 1:2 and NaNO3 100 mg l-1), the magnetic cells concentration is promoted to 6.5×107 cells ml-1, approximately 8.3% higher than that under the initial conditions. The pH value of medium is very important factor for magnetic cells concentration. It can be proved that the orthogonal design of experiment is of 90% confidence. The results from the hysteresis of WM-1 shows that Hc = 230 Oe, Ms = 0.9 emu/g dry wt. Cells,and Mr / Ms = 0.50.

SELECTION OF CITATIONS
SEARCH DETAIL