Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Res. Biomed. Eng. (Online) ; 33(1): 58-68, Mar. 2017. tab, graf
Article in English | LILACS | ID: biblio-842480

ABSTRACT

Abstract Introduction Ozonization is an alternative sterilization process for heat-sensitive medical devices. However, the side effects of this process on packaging materials should be verified. Methods Four types of commercial disposable packaging for medical devices were evaluated after undergoing ozone sterilization: crepe paper sheet, non-woven fabric sheet (SMS), medical grade paper-plastic pouch and Tyvec©-plastic pouch. For each material, the gas penetration through the microbiological barrier was measured. Other packaging properties, such as chemical composition, color, tactile and mechanical resistance, were also evaluated after sterilization, by using characterization techniques, namely microbiological indicators, infrared spectroscopy, tensile test and optical microscopy. Results All commercial disposable packaging showed good ozone penetration. Crepe paper and SMS were chemically and mechanically modified by ozone, while Tyvec© only suffered mechanical modification. Paper-plastic pouch was the packaging material which just experienced an acceptable reduction in tensile resistance, showing no variations on chemical or visual properties. Conclusion The results suggest that medical grade paper-plastic pouch is the most appropriate disposable medical device packaging to be sterilized by ozone when compared to other materials.

2.
Res. Biomed. Eng. (Online) ; 32(2): 144-152, Apr.-June 2016. tab, graf
Article in English | LILACS | ID: biblio-829469

ABSTRACT

Abstract Introduction Various works have shown that diamond-like carbon (DLC) coatings are able to improve the cells adhesion on prosthesis material and also cause protection against the physical wear. On the other hand there are reports about the effect of substrate polishing, in evidence of that roughness can enhance cell adhesion. In order to compare and quantify the joint effects of both factors, i.e, polishing and DLC coating, a commonly prosthesis material, the Ti-6Al-4V alloy, was used as raw material for substrates in our studies of macrophage cell adhesion rate on rough and polished samples, coated and uncoated with DLC. Methods The films were produced by PECVD technique on Ti-6Al-4V substrates and characterized by optical profilometry, scanning electron microscopy and Raman spectroscopy. The amount of cells was measured by particle analysis in IMAGE J software. Cytotoxicity tests were also carried out to infer the biocompatibility of the samples. Results The results showed that higher the surface roughness of the alloy, higher are the cells fixing on the samples surface, moreover group of samples with DLC favored the cell adhesion more than their respective uncoated groups. The cytotoxity tests confirmed that all samples were biocompatible independently of being polished or coated with DLC. Conclusion From the observed results, it was found that the rougher substrate coated with DLC showed a higher cell adhesion than the polished samples, either coated or uncoated with the film. It is concluded that the roughness of the Ti-6Al-4V alloy and the DLC coating act complementary to enhance cell adhesion.

3.
Res. Biomed. Eng. (Online) ; 31(4): 358-362, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: biblio-829454

ABSTRACT

Introduction:Candida species are responsible for about 80% of hospital fungal infections. Non-thermal plasmas operated at atmospheric pressure are increasingly used as an alternative to existing antimicrobial strategy. This work investigates the action of post-discharge region of a non-thermal atmospheric plasma jet, generated by a gliding arc reactor, on biofilms of standard strain of Candida albicans grown on polyurethane substrate. Methods Samples were divided into three groups: (i) non-treated; (ii) treated with argon plasma, and (iii) treated with argon plus air plasma. Subsequently to plasma treatment, counting of colony-forming units (CFU/ml) and cell viability tests were performed. In addition, the surface morphology of the samples was evaluated by scanning electron microscopy (SEM) and optical profilometry (OP). Results Reduction in CFU/ml of 85% and 88.1% were observed in groups ii and iii, respectively. Cell viability after treatment also showed reduction of 33% in group ii and 8% in group iii, in comparison with group i (100%). The SEM images allow observation of the effect of plasma chemistry on biofilm structure, and OP images showed a reduction of its surface roughness, which suggests a possible loss of biofilm mass. Conclusion The treatment in post-discharge region and the chemistries of plasma jet tested in this work were effective in controlling Candida albicans biofilm contamination. Finally, it was evidenced that argon plus air plasma was the most efficient to reduce cell viability.

SELECTION OF CITATIONS
SEARCH DETAIL