Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Chinese Journal of Biochemistry and Molecular Biology ; (12): 1520-1528, 2022.
Article in Chinese | WPRIM | ID: wpr-1015829

ABSTRACT

Among the types of lung cancer, lung adenocarcinoma accounts for the majority, and its overall survival rate is poor. B-cell translocation gene 2 (BTG2) is a member of the antiproliferative gene family, belonging to the BTG/TOB family. Many studies have shown that BTG2 was abnormally expressed in many types of tumors, but its regulatory role in the radiosensitivity of lung adenocarcinoma remained unclear. In this study, we explored the expression level of BTG2 in patients with lung adenocarcinoma and its correlation with clinical prognosis through online database and tissue samples of lung adenocarcinoma patient. The results indicated that the expression level of BTG2 decreased significantly in lung adenocarcinoma patient with radiation resistance. Bioinformatics analysis confirmed that BTG2 could respond to radiotherapy in lung adenocarcinoma cell lines, and its low expression in lung adenocarcinoma patients was associated with poor prognosis (P < 0.05). The lentivirus overexpressing BTG2 (OE-BTG2) was transfected into human lung adenocarcinoma cell lines to increase the expression level of BTG2 including A549 and H1299. And the effect of BTG2 overexpression on the radiosensitivity of lung adenocarcinoma cell lines was detected by clone formation assay. Clone formation experiment confirmed that overexpression of BTG2 could significantly enhance the radiosensitivity of A549 and H1299 cell lines (P < 0.05). The expression levels of BTG2 and apoptosis related protein-Bax were detected by Western blotting (WB) and immunohistochemistry (IHC). The effect of BTG2 on radiation sensitivity of lung adenocarcinoma was further detected via nude mouse in vivo. WB experiment confirmed that BTG2 upregulation could significantly increase the apoptosis level of A549 and H1299 cells after radiation. Moreover, BTG2 overexpression can markedly enhance the radiosensitivity of lung adenocarcinoma (P < 0.05) and increase the protein level of Bax after radiation in vivo. In conclusion, BTG2 had low expression in lung adenocarcinoma patients and its low expression level was closely related to the poor clinical prognosis. Overexpression of BTG2 can increase the radiosensitivity of lung adenocarcinoma cell lines and promote the process of apoptosis after radiation, indicating a new target for overcoming the radiation resistance of lung adenocarcinoma.

2.
China Journal of Chinese Materia Medica ; (24): 2392-2399, 2022.
Article in Chinese | WPRIM | ID: wpr-928118

ABSTRACT

With the rise of incidence, fatality rate, and number of young cases, diabetes mellitus has been one of the seven major diseases threatening human health. Although many antidiabetic drugs(oral or for injection) are available, the majority have serious side effects during the long-term use. Thus, it is of particularly vital to develop new drugs with low risk and definite effect. Psoraleae Fructus, a traditional medicinal widely used in the folk, has hypoglycemic, anti-osteoporosis, antitumor, estrogen-like, and anti-inflammatory effects. Thus, it has great clinical application potential. Chinese medicine and the active ingredients, characterized by multiple targets, multiple pathways, and multiple effects in the treatment of diabetes mellitus, have distinct advantages in clinical application. However, the safety of Chinese medicine remains to be a challenge, and one of keys is to clarifying the mechanism of a single Chinese medicinal and its active ingredients. With the method of literature research, this study summarized and analyzed the hypoglycemic mechanisms of Psoraleae Fructus and its main active ingredients over the last decade: regulating glucose metabolism, improving insulin resistance, and directly acting on pancreatic β-cells. The result is expected to serve as a reference for further research on the effects of Psoraleae Fructus and its main chemical constituents in lowering blood glucose and preventing diabetes mellitus and the clinical application.


Subject(s)
Humans , Drugs, Chinese Herbal/pharmacology , Fruit/chemistry , Hypoglycemic Agents/pharmacology , Osteoporosis/drug therapy , Psoralea/chemistry
3.
Journal of Experimental Hematology ; (6): 235-241, 2012.
Article in Chinese | WPRIM | ID: wpr-330983

ABSTRACT

The aim of this study was to investigate the effect of suppression of nicotinamide phosphoribosyltransferase (NAMPT) expression on imatinib-sensitivity in chronic myelogenous leukemia (CML) cell line K562 and its mechanisms, NAMPT siRNA was synthesized and transfected into K562 cells. PI/Calcein staining technique was used to determine survival rate of transfected K562 cells at 48th hour after exposure to 1 µmol/L imatinib. MTS method was used to determine the proliferation changes of transfected K562 cell at 48th hour after exposure to different doses of imatinib, then half inhibitory concentration (IC(50)) was calculated. Expression of NAMPT at 3rd-48th hour after exposure to 1 µmol/L imatinib was determined by Western blot. To explore the effect of NAMPT-siRNA and imatinib on the expression of apoptosis-related genes, the microarray data from NCBI GEO Data-Sets was analyzed, then the results were confirmed by Western blot. The luciferase reporter assay was used to determine the effect of NAMPT and imatinib on transcriptional activity of NF-κB transcription factors. The results showed that after exposure to 1 µmol/L imatinib for 3 - 48 h, there was no significant change of NAMPT expression in K562 cells. The expression of NAMPT could be effectively inhibited by the NAMPT-siRNA. After exposure to 1 µmol/L of imatinib for 48 h, the survival rate of NAMPT-siRNA interference group was lower than that of negative control group (P < 0.05), indicating that suppression of NAMPT expression can increase the sensitivity of K562 cells to imatinib and enhance the killing effect of imatinib on K562 cells. The IC(50) of imatinib in NAMPT-siRNA interference group was the lowest compared with that of control group (P < 0.05) after exposure to different concentrations of imatinib for 48 h, the fitted survival curves showed that the slope of NAMPT-siRNA interference group was the largest ranging between 0.01 - 0.1 µmol/L of imatinib. Data mining of expression profiling indicated that the anti-apoptotic factor Bcl-2 decreased in K562 cells treated with either NAMPT-siRNA or imatinib, which was confirmed by Western blot. The inhibitory effect was much more significant when both NAMPT-siRNA and imatinib were used. The results of luciferase reporter assay showed that either NAMPT-siRNA or imatinib decreased transcriptional activity of NF-κB. The decreased effect was much more significant when both NAMPT-siRNA and imatinib were used. It is concluded that survival of K562 cells affected by imatinib may not be due to regulation of expression of NAMPT. When expression of NAMPT decreases, the K562 cells are more sensitive to imatinib, this may be related with the decreased transcriptional activity of NF-κB and its downstream effector Bcl-2.


Subject(s)
Humans , Benzamides , Cytokines , Metabolism , Fusion Proteins, bcr-abl , Metabolism , Imatinib Mesylate , K562 Cells , NF-kappa B , Metabolism , Nicotinamide Phosphoribosyltransferase , Metabolism , Piperazines , Pharmacology , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Pyrimidines , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL