Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 3630-3636, 2016.
Article in Chinese | WPRIM | ID: wpr-307109

ABSTRACT

To better understand the biosynthetic pathway of flavonoids in Blumea balsamifera, and to increase the biosynthesis of flavone and flavonol amount, we carried out this research. Basing on transcriptome information, B. balsamifera flavonoids metabolic pathway was analyzed in KEGG data base. The result demonstrated that two metabolic pathways of flavonoids were found in KEGG data base. They were flavonoid biosynthesis pathway (No.ko00941) that contained 32 genes and flavone and flavonol biosynthesis pathway (No.ko00944) that contained 12 genes. Metabolic pathway of flavonoids in B. balsamifera was similar to that in other plants. Chalcone synthase (CHS) and Chalconeisomerase were much likely to be key enzymes on metabolic pathway of flavonoids in B. balsamifera. HCT was much relevant to biosynthesis of favones.

2.
China Journal of Chinese Materia Medica ; (24): 1585-1591, 2016.
Article in Chinese | WPRIM | ID: wpr-279203

ABSTRACT

In order to provide a theoretical basis for the regulation of active ingredient, the terpenoids metabolic pathway and specific enzymes in Blumea balsamifera are investigated. Basing on transcriptome information, B. balsamifera terpenoids metabolic pathway was analyzed in KEGG data base. Four metabolic pathway of terpenoids were found in KEGG data base. They were terpenoid backbone biosynthesis, monoterpenoid biosynthesis, diterpenoid biosynthesis, sesquiterpenoid and triterpenoid biosynthesis, contained 103, 10, 29,59 genes, respectively. Through the analysis of the enzyme and product in the pathway, the result showed that there were 8 kinds of monoterpenes, 3 kinds of diterpenes, 3 kinds of triterpenes and sesquiterpenes. The mainly key enzymes were deoxyxylulose 5-phosphate synthase, HMG-CoA reductase and allyl transferase system. In B. balsamifera, there were relatively few monoterpenes synthetic enzymes, while the type of products was much more than other terpenes. This may be relate to the non-specific catalytic characteristic of monoterpene synthase. It is expected to improve the yield of terpenoids in B. balsamifera by analysis the pathways and regulation the key enzymes.

SELECTION OF CITATIONS
SEARCH DETAIL