Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Journal of Experimental Hematology ; (6): 1113-1118, 2023.
Article in Chinese | WPRIM | ID: wpr-1009969

ABSTRACT

OBJECTIVE@#To construct a myeloproliferative neoplasms (MPN) transplanted mouse model with JAK2-V617F, MPLW515L or CALR-Type I gene mutation, and establish a systematic evaluation system to verify the success of model construction.@*METHODS@#The bone marrow c-kit+ cells of the mice were obtained by the following steps: The mice were killed by cervical dislocation, the femur, tibia and ilium were separated, and the bone marrow cells were collected. The c-kit+ cells were sorted after incubation with CD117 magnetic beads. The method of constructing mouse primary mutant cells is as follows: A gene mutation vector with a GFP tag was constructed by the retroviral system, and the retroviral vector was packaged into the Platinum-E cells to obtain the virus supernatant, and then used it to infect the c-kit+ cells of mice. The MPN mouse model was constructed as follows: the mouse primary c-kit+ cells containing the mutant genes were collected after infection, and then transplanted them via the tail vein into the female recipient mice of the same species which were irradiated with a lethal dose of gamma rays (8.0 Gy). The MPN mouse model was evaluated as follows: After transplantation, the peripheral blood of the mice was regularly collected from the tail vein to perform the complete blood count test, and the size of spleen and the degree of bone marrow fibrosis were estimated.@*RESULTS@#The mouse c-kit+ cells with the mutant genes were successfully obtained from the bone marrow. MPN mouse model was successfully constructed: The peripheral blood cells of the MPN-transplanted mice carried exogenous implanted GFP-positive cells, and the white blood cells (WBC), platelet (PLT) and hematocrit (HCT) were all increased; the body weight loss, and the water and food intake were reduced in the transplanted mice; further pathological analysis showed that the transplanted mice displayed splenomegaly and bone marrow fibrosis. These results suggested that the MPN mouse model was successfully constructed. According to the common and different characteristics of the three MPN mouse model, a preliminary evaluation system for judging the success of MPN mouse model construction was summarized, which mainly included the following indicators, for example, the proportion of GFP-positive cells in the peripheral blood of mice; WBC, PLT and HCT; the degree of spleen enlargement and the bone marrow fibrosis.@*CONCLUSION@#The MPN mouse model with JAK2-V617F, MPLW515L or CALR-Type I gene mutation is successfully established by retroviral system, which can provide an important experimental animal model for the research of MPN pathogenesis and drug-targeted therapy.


Subject(s)
Female , Mice , Animals , Primary Myelofibrosis , Myeloproliferative Disorders/genetics , Bone Marrow/pathology , Mutation , Disease Models, Animal , Neoplasms , Janus Kinase 2/genetics
2.
Chinese Journal of Pediatrics ; (12): 930-933, 2013.
Article in Chinese | WPRIM | ID: wpr-288810

ABSTRACT

<p><b>OBJECTIVE</b>To analyze clinical manifestations and gene mutations in a child with severe short stature, explore its molecular mechanism and further clarify the diagnostic procedure for short stature.</p><p><b>METHOD</b>We observed clinical characteristics of a patient with short stature and did diagnostic examinations, assessed the function of GH-IGF-1 axis, and surveyed its family members.Genomic DNA was extracted from peripheral blood, GHR, IGFALS, STAT5b and GH1 gene were amplified by PCR for sequencing, including exons and splicing areas.</p><p><b>RESULT</b>The patient presented symmetrical short stature (height -8.2 SDS) and facial features, and other congenital abnormalities.It displayed non-growth hormone deficiency. The baseline value of GH was 21 µg/L, and the peak was 57.9 µg/L. The value of IGF-1 was less than 25 µg/L, and the IGFBP-3 less than 50 µg/L. And IGF-1 generation test showed no response. There was no similar patients in the family members.Sequencing of GHR in the patient revealed a homozygous point mutation (c.Ivs6+1G>A), and her father and mother had the same heterozygous mutation. The same mutation was not identified for her sister.No other candidate gene was found.</p><p><b>CONCLUSION</b>As the result of combined clinical characteristics and lab examinations, as well as gene detection, the case was diagnosed with Laron syndrome and GHR gene mutation is the molecular mechanism.We should explicit the etiological diagnosis for short stature, and avoid missed diagnosis and misdiagnosis.</p>


Subject(s)
Child , Humans , Male , Base Sequence , Body Height , DNA Mutational Analysis , Exons , Growth Disorders , Blood , Genetics , Pathology , Human Growth Hormone , Blood , Insulin-Like Growth Factor Binding Protein 3 , Blood , Insulin-Like Growth Factor I , Laron Syndrome , Blood , Genetics , Pathology , Molecular Sequence Data , Mutation , Pedigree , Receptors, Somatotropin , Genetics , STAT5 Transcription Factor , Genetics
3.
Chinese Journal of Surgery ; (12): 986-989, 2007.
Article in Chinese | WPRIM | ID: wpr-340875

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the mechanism underlying myofibroblast differentiation induced by transforming growth factor (TGF) beta1 in obliterative bronchiolitis following lung transplantation.</p><p><b>METHODS</b>Heterotopic tracheal transplantation was performed in Smad3 wild-type and knock-out mice to simulate the lung transplantation in human. Murine tracheal fibroblasts cultivated in primary culture were used for in vitro study. Immunohistochemistry, immunocytochemistry, Western Blotting, RT-PCR and DNA electrophoresis mobility gel shift assay were conducted to detect the expression of alpha-smooth muscle actin (alphaSMA), the marker of fibroblast-myofibroblast differentiation, and the activation of Smad3, p38 and ERK1/2.</p><p><b>RESULTS</b>In affected airways of experimental obliterative bronchiolitis, abundant expression of alphaSMA were found. In vitro study for tracheal fibroblasts, the activation of Smad3 by TGF-beta1 presents as three major forms, phosphorylation, nuclear translocation and DNA binding. In Smad3 wild-type fibroblasts, TGF-beta1 induces the increase of the myofibroblasts transformation, characterized by the elevation of alphaSMA, both at transcription and protein level. While in Smad3 knock-out fibroblasts, the transformation of myofibroblasts induced by TGF-beta1 is significantly decreased (t = 2.080, P = 0.027; t = 1.982, P = 0.032), but not completely abolished. Further study in Smad3-deficient fibroblasts demonstrates that p38 and ERK1/2 could be activated by TGF-beta1 and result in fibroblast differentiation.</p><p><b>CONCLUSIONS</b>TGF-beta1 could promote the transformation of fibroblasts into myofibroblasts in Smad3 dependent and independent signal pathways, especially the Smad3 dependent path, and result in the development of obliterative bronchiolitis.</p>


Subject(s)
Animals , Humans , Mice , Actins , Genetics , Metabolism , Blotting, Western , Bronchiolitis Obliterans , Genetics , Pathology , General Surgery , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Fibroblasts , Cell Biology , Metabolism , Immunohistochemistry , Mice, Inbred BALB C , Mice, Knockout , Mitogen-Activated Protein Kinase 1 , Metabolism , Mitogen-Activated Protein Kinase 3 , Metabolism , Reverse Transcriptase Polymerase Chain Reaction , Smad3 Protein , Genetics , Metabolism , Trachea , Cell Biology , Transplantation , Transforming Growth Factor beta1 , Pharmacology , p38 Mitogen-Activated Protein Kinases , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL