Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 174-180, 2020.
Article in Chinese | WPRIM | ID: wpr-873202

ABSTRACT

Objective:To reveal the dynamic changes of flavonoids secondary metabolites and relevant genes expressions in the process of germination of tartary buckwheat seeds by investigating the content of catechins,epicatechins,rutin,and quercetin,and the expressions of their relevant genes in tartary buckwheat sprouts and seedlings,in order to provide scientific basis for the selection of high-quality, high-nutrition tartary buckwheat sprouts.Method:Contents of catechin,epicatechin,rutin,and quercetin in tartary buckwheat sprouts and seedlings were detected by UPLC-ESI-QQQ-MS,and the expression levels of genes relating to flavonoids synthesis in tartary buckwheat sprouts and seedlings were detected by real-time quantitative PCR.Result:There were differences between tartary buckwheat sprouts and seedlings in the relative contents of catechin,epicatechin,rutin and quercetin,as well as the expressions of relevant genes in the synthesis pathway, including FtPAL,FtC4H,Ft4CL,FtCHS,FtCHI,FtF3H,FtF3'H,FtFLS,FtDFR,FtLAR,FtANS,FtANR. The contents of flavonoids and the expressions of relevant genes in tartary buckwheat sprouts were higher than those in tartary buckwheat seedlings.Conclusion:The higher accumulation of secondary metabolites and flavonoids in tartary buckwheat sprouts may be related to tartary buckwheat seeds' resistance to the external environment in the initial growth stage of germination. From the perspective of application,there are more flavonoids in tartary buckwheat sprouts than in tartary buckwheat seedlings, indicating that tartary buckwheat sprouts have a higher nutritional value.

2.
China Journal of Chinese Materia Medica ; (24): 469-477, 2018.
Article in Chinese | WPRIM | ID: wpr-771713

ABSTRACT

Tartary buckwheat Fagopyrum tataricum is an important medicinal and functional herb due to its rich content of flavonoids in the seeds. F.tataricum exhibited good functions for free radicals scavenging, anti-oxidation, anti-aging activities. Although much genetic knowledge of the synthesis, regulation, accumulation of rutin, the genetic basis of proanthocyanidins(PAs) in tartary buckwheat and their related gene expression changes under different lights(blue, red, far red, ultraviolet light) remain largely unexplored. In this study, we cloned one anthocyanidin reductase gene(ANR) and two leucocyanidin reductase gene(LAR) named FtANR,FtLAR1,FtLAR3 involved in formation of(+)-catechin and(-)-epicatechin precusor proanthocyanidin by digging out F. tataricum seed transcriptome data. The expression data showed that the opposite influence of red light on these gene transcript level compared to others lights. The expression levels of FtANR and FtLAR1 decreased and FtLAR3 appeared increment after exposed in the red light, while the expression levels of those genes appeared opposite result after exposed in the blue and far red light.


Subject(s)
Fagopyrum , Radiation Effects , Gene Expression Regulation, Plant , Radiation Effects , Light , NADH, NADPH Oxidoreductases , Genetics , Plant Proteins , Genetics , Proanthocyanidins , Seeds , Radiation Effects
SELECTION OF CITATIONS
SEARCH DETAIL