Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 196-201, 2024.
Article in Chinese | WPRIM | ID: wpr-1006542

ABSTRACT

Objective@#This study aimed to explore the root length of maxillary and mandibular anterior teeth and central incisor crown-root morphology in patients with high-angle skeletal Class Ⅱ open bite, aiming to provide a reference for clinical treatment.@*. Methods@#This study was reviewed and approved by the Ethics Committee, and informed consent was obtained from the patients. CBCT images of eighty-one untreated patients (40 anterior open bite patients and 41 normal overbite patients) with high-angle skeletal Class Ⅱ malocclusion were selected before treatment. Dolphin software was used to study the root length of maxillary and mandibular anterior teeth and central incisor crown-root morphology, and the differences between the two groups were analyzed.@*Results@#There was no statistical significance in the root length of maxillary lateral incisor and canine between the open bite group and the normal overbite group, significant differences were found in the root length of maxillary central incisor (11.12 ± 1.37) mm、mandibular central incisor(10.15 ± 1.09)mm, mandibular lateral incisor(11.27 ± 1.15)mm and mandibular canine(12.81 ± 1.48)mm between the open bite group and the normal overbite group(P<0.05). On the other hand, the two groups were significantly different in crown-root morphology of the maxillary central incisor (1.10° ± 3.62° vs. 4.53° ± 2.30°, P<0.01) but not in the mandibular central incisor.@*Conclusion@#The root length of the maxillary central incisor, mandibular central incisor, mandibular lateral incisor, mandibular canine in high-angle Class Ⅱ open bite patients is shorter than that in high-angle Class Ⅱ normal overbite patients, and the long axis of the crown of the maxillary central incisor in high-angle Class Ⅱ open bite patients obviously deviates toward the labial side relative to the long axis of the root. The crown-root angle is smaller, which is beneficial to torque control or adduction movement of the anterior teeth in high-angle Class Ⅱ open bite patients.

2.
Journal of Prevention and Treatment for Stomatological Diseases ; (12): 485-489, 2019.
Article in Chinese | WPRIM | ID: wpr-750461

ABSTRACT

Objective@#To study the effect of continuous static pressure on the endoplasmic reticulum of human periodontal ligament cells (hPDLCs) and the mechanism of osteogenic differentiation.@*Methods@#hPDLCs cultured in vitro were subjected to 1 g/cm 2 of continuous compressive pressure (CCP) by custom-made, round, glass panes for 0, 2, 4, and 6 h, respectively. Alkaline phosphatase staining was used to detect osteogenic differentiation, and real-time quantitative PCR was used to detect the expression of protein kinase receptor-like ER kinase (PERK), eukaryotic translation initiation factor 2α (eIF2α), and transcription activation factor 4 (ATF-4). The 0 h loading group was the control group.@*Results@#After CCP treatment, the alkaline phosphatase staining of hPDLCs was blue-violet and significantly stronger than that of cells in the control group. The expression levels of PERK and ATF4 in the hPDLCs after CCP treatment were higher than those of cells in the control group (P < 0.05) and increased over time (P < 0.05). The expression of eIF2α was lower in the experimental groups than in the control group (P < 0.05) and decreased over time (P < 0.05).@*Conclusion @#Mechanical stimulation can activate ERS in hPDLCs, leading to enhanced PERK-eIF2α-ATF4 signaling and inducing osteogenic differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL