Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Rev. bras. farmacogn ; 25(3): 269-277, May-June 2015. tab, ilus
Article in English | LILACS | ID: lil-757438

ABSTRACT

AbstractSome publications have described the pharmacological properties of latices proteins. Thus, in the present study proteins from Plumeria pudica Jacq., Apocynaceae, latex were evaluated for anti-inflammatory and antinociceptive activities. Obtained data showed that an intraperitoneal administration of different doses of latex was able to reduce the paw edema induced by carrageenan in a dose-dependent manner (better dose 40 mg/kg; 72.7% inhibition at 3rd and 78.7% at 4th hour) and the edema induced by dextran (40 mg/kg; 51.5% inhibition at 30 min and 93.0% at 1st hour). Inhibition of edema induced by carrageenan was accompanied by a reduction of myeloperoxidase activity. Pre-treating animals with latex (40 mg/kg) also inhibited the paw edema induced by histamine, serotonin, bradykinin, prostaglandin E2, compound 48/80. Additionally, the latex (40 mg/kg) reduced the leukocyte peritoneal migration induced by carrageenan and this event was followed by reduction of IL-1β and TNF-α in peritoneal fluid. The latex-treatment (40 mg/kg) reduced the animal abdominal constrictions induced by acetic acid and the first phase on paw licking model induced by formalin. When latex was treated with heat (at 100 °C for 30 min), anti-edematogenic and myeloperoxidase activities were significantly reduced, indicating the involvement of heat-sensitive proteins on anti-inflammatory effect. Our results evidence that latex fluids are a source of proteins with pharmacological properties.

2.
Mem. Inst. Oswaldo Cruz ; 104(6): 805-812, Sept. 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-529568

ABSTRACT

It has been shown previously that the laticifer fluid of Calotropis procera (Ait.) R.Br. is highly toxic to the egg hatching and larval development of Aedes aegypti L. In the present study, the larvicidal potential of other laticifer fluids obtained from Cryptostegia grandiflora R.Br., Plumeria rubra L. and Euphorbia tirucalli L. was evaluated. We attempted to correlate larvicidal activity with the presence of endogenous proteolytic activity in the protein fraction of the fluids. After collection, the fluids were processed by centrifugation and dialysis to obtain the soluble laticifer protein (LP) fractions and eliminate water insoluble and low molecular mass molecules. LP did not visibly affect egg hatching at the doses assayed. LP from Cr. grandiflora exhibited the highest larval toxicity, while P. rubra was almost inactive. E. tirucalli was slightly active, but its activity could not be correlated to proteins since no protein was detected in the fluid. The larvicidal effects of LP from C. procera and Cr. grandiflora showed a significant relationship with the proteolytic activity of cysteine proteinases, which are present in both materials. A purified cysteine proteinase (papain) from the latex of Carica papaya (obtained from Sigma) was similarly effective, whereas trypsin and chymotrypsin (both serine proteinases) were ineffective. The results provide evidence for the involvement of cysteine proteinase activity in the larvicidal action of some laticifer fluids. C. procera is an invasive species found in areas infested with Ae. aegypti and thus could prove useful for combating mosquito proliferation. This is the first report to present evidence for the use of proteolytic enzymes as chemical agents to destroy Ae. aegypti larvae.


Subject(s)
Animals , Aedes/drug effects , Apocynaceae/chemistry , Apocynaceae/chemistry , Cysteine Proteases/pharmacology , Euphorbia/chemistry , Insect Proteins/drug effects , Latex/pharmacology , Aedes/growth & development , Cysteine Proteases/isolation & purification , Insect Proteins/physiology , Larva/drug effects , Larva/growth & development , Latex/chemistry , Latex/isolation & purification
3.
Mem. Inst. Oswaldo Cruz ; 97(2): 275-279, Mar. 2002. ilus, graf
Article in English | LILACS | ID: lil-326293

ABSTRACT

Interaction of glucose/mannose-binding lectins in solution with immobilized glycoproteins was followed in real time using surface plasmon resonance technology. The lectins which share many biochemical and structural features could be clearly differentiated in terms of their specificity for complex glycoconjugates. The most prominent interaction of the lectins with PHA-E comparing with soybean agglutinin, both glycoproteins exhibiting high mannose oligosaccharides, suggests that the whole structure of the glycoproteins themselves, may interfere in affinity. These findings also support the hypothesis that minor amino acid replacements in the primary sequence of the lectins might be responsible for their divergence in fine specificity and biological activities. This is the first report using surface plasmon resonance technology that evidences differences of Diocleinae lectins in respect their fine glycan-specificity


Subject(s)
Glycoproteins , Chromatography, Affinity , Drug Interactions , Protein Binding , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL