Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Year range
1.
Acta Pharmaceutica Sinica B ; (6): 1771-1785, 2023.
Article in English | WPRIM | ID: wpr-982806

ABSTRACT

Bibenzyls, a kind of important plant polyphenols, have attracted growing attention for their broad and remarkable pharmacological activities. However, due to the low abundance in nature, uncontrollable and environmentally unfriendly chemical synthesis processes, these compounds are not readily accessible. Herein, one high-yield bibenzyl backbone-producing Escherichia coli strain was constructed by using a highly active and substrate-promiscuous bibenzyl synthase identified from Dendrobium officinale in combination with starter and extender biosynthetic enzymes. Three types of efficiently post-modifying modular strains were engineered by employing methyltransferases, prenyltransferase, and glycosyltransferase with high activity and substrate tolerance together with their corresponding donor biosynthetic modules. Structurally different bibenzyl derivatives were tandemly and/or divergently synthesized by co-culture engineering in various combination modes. Especially, a prenylated bibenzyl derivative ( 12) was found to be an antioxidant that exhibited potent neuroprotective activity in the cellular and rat models of ischemia stroke. RNA-seq, quantitative RT-PCR, and Western-blot analysis demonstrated that 12 could up-regulate the expression level of an apoptosis-inducing factor, mitochondria associated 3 (Aifm3), suggesting that Aifm3 might be a new target in ischemic stroke therapy. This study provides a flexible plug-and-play strategy for the easy-to-implement synthesis of structurally diverse bibenzyls through a modular co-culture engineering pipeline for drug discovery.

2.
Acta Pharmaceutica Sinica B ; (6): 271-283, 2023.
Article in English | WPRIM | ID: wpr-971710

ABSTRACT

Astragalosides are the main active constituents of traditional Chinese medicine Huang-Qi, of which cycloastragenol-type glycosides are the most typical and major bioactive compounds. This kind of compounds exhibit various biological functions including cardiovascular protective, neuroprotective, etc. Owing to the limitations of natural sources and the difficulties encountered in chemical synthesis, re-engineering of biosynthetic machinery will offer an alternative and promising approach to producing astragalosides. However, the biosynthetic pathway for astragalosides remains elusive due to their complex structures and numerous reaction types and steps. Herein, guided by transcriptome and phylogenetic analyses, a cycloartenol synthase and four glycosyltransferases catalyzing the committed steps in the biosynthesis of such bioactive astragalosides were functionally characterized from Astragalus membranaceus. AmCAS1, the first reported cycloartenol synthase from Astragalus genus, is capable of catalyzing the formation of cycloartenol; AmUGT15, AmUGT14, AmUGT13, and AmUGT7 are four glycosyltransferases biochemically characterized to catalyze 3-O-xylosylation, 3-O-glucosylation, 25-O-glucosylation/O-xylosylation and 2'-O-glucosylation of cycloastragenol glycosides, respectively. These findings not only clarified the crucial enzymes for the biosynthesis and the molecular basis for the structural diversity of astragalosides in Astragalus plants, also paved the way for further completely deciphering the biosynthetic pathway and constructing an artificial pathway for their efficient production.

3.
Acta Pharmaceutica Sinica B ; (6): 678-686, 2018.
Article in English | WPRIM | ID: wpr-690872

ABSTRACT

Prenylflavonoids are valuable natural products that have diverse biological properties, and are usually generated biologically by multiple metabolic enzymes in nature. In this study, structurally diverse prenylflavonoids were conveniently synthesized by enzymatic catalysis by combining GuILDT, a regiospecific chalcone prenyltransferase, and GuCHI, a stereospecific chalcone isomerase that has promiscuous activity for both chalcones and prenylchalcones as substrates. Our findings provided a new approach for the synthesis of natural/unnatural bioactive prenylflavonoids, including prenylchalcones and optical prenylflavanones with chalcone origins.

4.
Acta Pharmaceutica Sinica ; (12): 913-20, 2014.
Article in English | WPRIM | ID: wpr-448671

ABSTRACT

Seven meroterpenoids and five small-molecular precursors were isolated from Penicillium sp., an endophytic fungus from Dysosma versipellis. The structures of new compounds, 11beta-acetoxyisoaustinone (1) and isoberkedienolactone (2) were elucidated based on analysis of the spectral data, and the absolute configuration of 2 was established by TDDFT ECD calculation with satisfactory match to its experimental ECD data. Meroterpenoids originated tetraketide and pentaketide precursors, resepectively, were found to be simultaneously produced in specific fungus of Penicillium species. These compounds showed weak cytotoxicity in vitro against HCT-116, HepG2, BGC-823, NCI-H1650, and A2780 cell lines with IC 50 > 10 micromol x L(-1).

5.
Acta Pharmaceutica Sinica ; (12): 161-9, 2013.
Article in Chinese | WPRIM | ID: wpr-445517

ABSTRACT

The prenylation of aromatic compounds plays an important role in the natural product research because it not only gives rise to an astounding diversity of primary and secondary metabolites in plants, fungi and bacteria but also enhances the bioactivities and bioavailabilities of these compounds. However, further investigation of prenylated aromatic compounds is frequently hindered due to their low content in nature and difficulties in chemical synthesis. Cloning aromatic prenyltransferase genes followed by heterologous expression would be attractive tools for the chemoenzymatic synthesis of bioactive molecules. This review summarizes the classifications, structural investigations, enzymatic catalysis and other progress in aromatic prenyltransferases originated from microorganisms.

SELECTION OF CITATIONS
SEARCH DETAIL