Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
International Journal of Oral Science ; (4): 99-104, 2009.
Article in English | WPRIM | ID: wpr-269729

ABSTRACT

<p><b>AIM</b>The piezoelectric properties and cytotoxicity of a porous lead-free piezoelectric ceramic for use as a direct bone substitute were investigated.</p><p><b>METHODOLOGY</b>Cold isostatic pressing (CIP) was applied to fabricate porous lithium sodium potassium niobate (Li0.06Na0.5K0.44) NbO3 specimens using a pore-forming method. The morphologies of the CIP-processed specimens were characterized and compared to those of specimens made by from conventional pressing procedures. The effects of the ceramic on the attachment and proliferation of osteoblasts isolated from the cranium of 1-day-old Sprague-Dawley rats were examined by a scanning electron microscopy (SEM) and methylthiazol tetrazolium (MTT) assay.</p><p><b>RESULTS</b>The results showed that CIP enhanced piezoelectricity and biological performance of the niobate specimen, and also promoted an extracellular matrix-like topography of it. In vitro studies showed that the CIP-enhanced material had positive effects on the attachment and proliferation of osteoblasts.</p><p><b>CONCLUSION</b>Niobate ceramic generated by CIP shows a promise for being a piezoelectric composite bone substitute.</p>


Subject(s)
Animals , Rats , Biocompatible Materials , Chemistry , Toxicity , Bone Substitutes , Toxicity , Cell Adhesion , Cell Proliferation , Cells, Cultured , Ceramics , Toxicity , Coloring Agents , Electrochemistry , Materials Testing , Microscopy, Electron, Scanning , Niobium , Toxicity , Osteoblasts , Oxides , Toxicity , Porosity , Potassium , Toxicity , Pressure , Rats, Sprague-Dawley , Skull , Cell Biology , Stress, Mechanical , Surface Properties , Tetrazolium Salts , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL