Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Virology ; (6): 1-5, 2014.
Article in Chinese | WPRIM | ID: wpr-356647

ABSTRACT

In order to develop a rapid detection kit for novel avian influenza virus (AIV) subtype H7N9, two sets of specific primers and probes were designed based on the nucleotide sequences of hemagglutinin antigen (HA) and neuraminidase antigen (NA) of novel H7N9 virus (2013) available in GenBank to establish the method of TaqMan probe-based multiplex real-time RT-PCR for rapid detection of AIV subtype H7N9. The primer and probe of HA were for all H7 subtype AIVs, while the primer and probe of NA were only for novel N9 subtype AIVs. The results showed that this method had high sensitivity and specificity. This method was applicable to the testing of positive standard sample with a minimum concentration of 10 copies/microL; it not only distinguished H7 subtype from H1, H3, H5, H6, and H9 subtypes, but also distinguished novel N9 subtype from traditional N9 subtype. A total of 2700 samples from Zhuhai, China were tested by this method, and the results were as expected. For the advantages of sensitivity and specificity, the method holds promise for wide application.


Subject(s)
Animals , Birds , Virology , Influenza A Virus, H7N9 Subtype , Genetics , Physiology , Influenza in Birds , Virology , Real-Time Polymerase Chain Reaction , Methods , Species Specificity , Taq Polymerase , Metabolism , Time Factors
2.
Chinese Journal of Virology ; (6): 386-391, 2013.
Article in Chinese | WPRIM | ID: wpr-339940

ABSTRACT

In order to study the proliferation inhibition effect of H5N1 subtype avian influenza virus (AIV) with small interfere RNA (siRNA), a total of 4 siRNAs were designed in accordance with the NP and PA genes of H5N1 subtype AIV, the siRNAs were then transfected to chicken embryo fibroblast(CEF), CEF was infected with H5N1 subtype AIV after 6 hrs. Virus titer of cell supernatant was tested at 16-56hrs post infection, and pathological changes of the cells was observed; mRNA levels of NP, PA, HA and p13-actin gene were tested at 36hrs post infection. The results showed that these 4 siRNAs could inhibit the prolif-eration of H5N1 subtype AIV in CEF in varying degrees, and one siRNA targeting PA was best per-formed. The experimental results also showed that the inhibition effect was decreased with the time prolonged. This research provides a basis for further studying RNAi on AIV prevention and control.


Subject(s)
Animals , Chick Embryo , Humans , Actins , Genetics , DNA Primers , Genetics , Fibroblasts , Virology , Hemagglutination , Hemagglutinin Glycoproteins, Influenza Virus , Genetics , Hemagglutinins , Genetics , Influenza A Virus, H5N1 Subtype , Genetics , Physiology , RNA Interference , RNA-Dependent RNA Polymerase , Genetics , RNA, Small Interfering , Genetics , RNA-Binding Proteins , Genetics , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Transfection , Viral Core Proteins , Genetics , Viral Proteins , Genetics , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL