Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Pakistan Journal of Pharmaceutical Sciences. 2015; 28 (5): 1595-1600
in English | IMEMR | ID: emr-166648

ABSTRACT

The aim of this study was to explore the effects of lentinan on the proliferation of human bladder cancer T24 cells and the mechanism regarding the inhibition of cell growth. When gene regulation technique was used to build pcDNA3-TRPM8 expression plasmid, TRPM8 channel activator-lentinan was used for intervention to observe the proliferation of T24 cells. Flow cytometry cell screening method was used to observe the cell ratio of each cell cycle of T24 cells and the ratio of apoptotic and dying cells under the intervention of different concentrations of lentinan using PI single-staining and Annexin V-FITC/PI double-staining. JC-1 and DCFH-DA fluorescence probes were used to observe the influence of different concentrations of lentinan on the mitochondrial membrane potential of T24 cells and intracellular reactive oxygen species [ROS] by confocal microscope. pcDNA-TRPMS plasmid was successfully constructed, and lentinan could inhibit the growth of T24 cells in a dose-dependent pattern. Lentinan played its biological effect through TRPM8 channel to further inhibit the growth of T24 cells, reduced the mitochondrial membrane potential of bladder cancer T24 cell line, and increased the generation of ROS in human bladder cancer T24 cell line. Lentinan led to mitochondrial depolarization or activation of non-mitochondrial pathway to induce intracellular ROS generation, thus eventually inducing T24 cell death and growth inhibition


Subject(s)
Apoptosis , Urinary Bladder Neoplasms
2.
Pakistan Journal of Medical Sciences. 2013; 29 (1): 135-139
in English | IMEMR | ID: emr-127053

ABSTRACT

To investigate the common bacterial resistance of clinical isolates in our hospital in the second half of 2011. Pathogens isolated from clinical samples in the second half of 2011 were analyzed and categorized to perform susceptibility tests. In the gram-negative bacteria, Enterobacteriaceae and non-fermenting gram-negative bacilli accounted for 55.89% and 34.51%. In the gram-positive bacteria, Staphylococcus aureus, Coagulasenegative staphylococci, Enterococcus, Strptococcus pneumonia accounted for 32.85%, 40.39%, 12.41% and 10.22%, respectively. Other species accounted for 4.14%. Klebsiella pneumonia and Pseudomonas aeruginosa were sensitive to cepoperazon, cefepime and imipenem. However, Acinetobacter baumannii was more sensitive to carbapenems antibiotics, which was followed by fourth generation cephalosporins. Klebsiella pneumoniae was extremely sensitive to amikacin, cefepime and imipenem, but was resistant to ampicillin. The detection rates of the broad-spectrum Escherichia coli, Pseudomonasaeruginosa and Klebsiella pneumoniae were 54.51%, 52.08% and 38.65%. The gram negative bacilli were the prevalent clinical pathogens in our hospital in the second half of 2011. The drug resistance of pathogenic bacteria has increased significantly recently, thus the surveillance of antibacterial agents is necessary, and rational use of antibiotic will be urgently needed to reduce the production and dissemination of drug resistant strains


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL