Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Protein & Cell ; (12): 848-866, 2018.
Article in English | WPRIM | ID: wpr-758025

ABSTRACT

Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.


Subject(s)
Animals , Humans , Mice , Cells, Cultured , DNA-Binding Proteins , Metabolism , Electrophoretic Mobility Shift Assay , Immunoprecipitation , MicroRNAs , Genetics , Metabolism , Neoplasms , Genetics , Metabolism
2.
Protein & Cell ; (12): 704-713, 2014.
Article in English | WPRIM | ID: wpr-757656

ABSTRACT

Ubiquitin specific protease 33 (USP33) is a multifunctional protein regulating diverse cellular processes. The expression and role of USP33 in lung cancer remain unexplored. In this study, we show that USP33 is down-regulated in multiple cohorts of lung cancer patients and that low expression of USP33 is associated with poor prognosis. USP33 mediates Slit-Robo signaling in lung cancer cell migration. Downregulation of USP33 reduces the protein stability of Robo1 in lung cancer cells, providing a previously unknown mechanism for USP33 function in mediating Slit activity in lung cancer cells. Taken together, USP33 is a new player in lung cancer that regulates Slit-Robo signaling. Our data suggest that USP33 may be a candidate tumor suppressor for lung cancer with potential as a prognostic marker.


Subject(s)
Female , Humans , Male , Middle Aged , Blotting, Western , Cell Line, Tumor , Cell Movement , Genetics , Physiology , Cohort Studies , Down-Regulation , Gene Expression Regulation, Neoplastic , HEK293 Cells , Immunohistochemistry , Intercellular Signaling Peptides and Proteins , Metabolism , Kaplan-Meier Estimate , Lung Neoplasms , Genetics , Metabolism , Pathology , Nerve Tissue Proteins , Metabolism , Prognosis , RNA Interference , Receptors, Immunologic , Metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Genetics , Physiology , Ubiquitin Thiolesterase , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL