Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
International Journal of Environmental Research. 2013; 7 (4): 887-894
in English | IMEMR | ID: emr-138322

ABSTRACT

Considering the point that the existence of heavy metals in the wastewater are so dangerous for the environment and it would have many bad consequences for all the creatures including human beings, we must try out the ways that make us capable of adsorbing these heavy metals. In order to accomplish this goal we should use a method called adsorbing. In this study the adsorption of copper ions in hydrated copper nitrate [Cu [NO[3]][2], 3H[2]O] aqueous solution on natural zeolite [Clinoptilolite] and vermiculite was studied in batch reactors. The effect of temperature [25, 50, 75 °C], solution pH [1.00-5.5] and concentration effect on the traditionally defined adsorption isotherm in the adsorbate range 100-325 mg/L for clinoptilolite and 100- 650 mg/L for vermiculite on the removal of copper was studied. The results showed that an increase in pH increases the adsorptivity of vermiculite. Pseudo second order model best described the reaction rate. Batch adsorption experiments conducted at room temperature [25 +/- 1 °C] showed that the adsorption pattern followed the Langmuir and Freundlich isotherm models. Optimum conditions for adsorption were determined at pH 5.5, and vermiculite and clinoptilolite at a dose of 3g. The concentration of metal ions was measured by Atomic Absorption Spectrometer [AAS]. The results indicated that vermiculite and clinoptilolite are appropriate for adsorbing copper ions


Subject(s)
Adsorption , Water Pollutants, Chemical , Copper/isolation & purification , Aluminum Silicates , Zeolites , Metals, Heavy/isolation & purification , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL