Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Braz. oral res. (Online) ; 37: e116, 2023. tab, graf
Article in English | LILACS-Express | LILACS, BBO | ID: biblio-1520509

ABSTRACT

Abstract The aim of this systematic review was to evaluate published papers regarding the micronucleus assay in oral mucosal cells of patients undergoing orthodontic therapy (OT). A search of the scientific literature was made in the PubMed, Scopus, and Web of Science databases for all data published until November, 2021 using the combination of the following keywords: "fixed orthodontic therapy," "genetic damage", "DNA damage," "genotoxicity", "mutagenicity", "buccal cells", "oral mucosa cells," and "micronucleus assay". The systematic review was designed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Nine studies were retrieved. Some authors demonstrated that OT induces cytogenetic damage in oral mucosal cells. Out of the nine studies included, two were classified as strong, five as moderate, and two as weak, according to the quality assessment components of the Effective Public Health Practice Project (EPHPP). Meta-analysis data revealed no relationship between mutagenicity in oral cells and OT in different months of treatment. At one month, the SMD = 0.65 and p = 0.08; after three months of OT, the SMD = 1.21 and p = 0.07; and after six months of OT, the SMD = 0.56 and p = 0.11. In the analyzed months of OT, I2 values were >75%, indicating high heterogeneity. In summary, this review was not able to demonstrate that OT induces genetic damage in oral cells. The study is important for the protection of patients undergoing fixed OT, given that mutagenesis participates in the multi-step process of carcinogenesis.

2.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 69(12): e20230961, 2023. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1521509

ABSTRACT

SUMMARY OBJECTIVE: The objective of this study was to evaluate cytogenetic changes in individuals submitted to oral human immunodeficiency virus pre-exposure prophylaxis use through the micronucleus test in oral mucosa. METHODS: This study consisted of 37 individuals, of whom 17 comprised the pre-exposure prophylaxis group and 20 comprised the control group. A total of 2,000 cells per slide were analyzed for the determination of micronuclei, binucleation, nuclear buds, and cytotoxicity parameters: pyknosis, karyolysis, and karyorrhexis (KR), in a double-blind manner. The repair index was also evaluated in this setting. RESULTS: In the mutagenicity parameters, the pre-exposure prophylaxis group showed increased frequencies of micronuclei (p=0.0001), binucleation (p=0.001), and nuclear buds (p=0.07). Regarding the cytotoxicity parameters, there was an increase with a statistical difference (p≤0.05) in the karyorrhexis frequency (p=0.001). Additionally, the repair system efficiency decreased in the pre-exposure prophylaxis group. CONCLUSION: These results indicate that individuals undergoing pre-exposure prophylaxis use have geno- and cytotoxicity in oral mucosal cells.

3.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 69(10): e20230397, 2023. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1514683

ABSTRACT

SUMMARY OBJECTIVE: The objective of this study was to evaluate possible cytogenetic changes in children and adolescents with human immunodeficiency virus on antiretroviral therapy, through the micronucleus test in oral mucosa. METHODS: This was a prospective study consisted of 40 individuals, of whom 21 comprised the human immunodeficiency virus group and 19 comprised the control group. Children and adolescents with human immunodeficiency virus were enrolled. The inclusion criteria were <18 years old and consent in participating in the study. The exclusion criteria were the presence of numerous systemic comorbidities, oral lesions, the habit of smoking, alcohol consumption, and X-rays or CT scans taken within 15 days prior to sample collection. A gentle scraping was performed on the inner portion of the jugal mucosa on both sides. A total of 2,000 cells per slide were analyzed for the determination of mutagenicity parameters as follows: micronuclei, binucleation, and nuclear buds. For measuring cytotoxicity, the following metanuclear changes were evaluated: pyknosis, karyolysis, and karyorrhexis, in a double-blind manner. The repair index was also evaluated in this setting. RESULTS: The human immunodeficiency virus group showed high frequencies of micronuclei (p=0.05), binucleated cells (p=0.001), and nuclear buds (p=0.03). In the cytotoxicity parameters, represented by the cell death phases, there was an increase with statistical difference (p≤0.05) in the karyorrhexis frequency (p=0.05). Additionally, repair index was decreased in the human immunodeficiency virus group. CONCLUSION: These results indicate that human immunodeficiency virus -infected individuals undergoing antiretroviral therapy have cytogenetic changes in oral mucosal cells.

SELECTION OF CITATIONS
SEARCH DETAIL