Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Laboratory Animal Research ; : 49-56, 2017.
Article in English | WPRIM | ID: wpr-204562

ABSTRACT

Turtle-borne Salmonella enterica owns significance as a leading cause in human salmonellosis. The current study aimed to determine the quinolone susceptibility and the genetic characteristics of 21 strains of S. enterica subsp. enterica isolated from pet turtles. Susceptibility of four antimicrobials including nalidixic acid, ciprofloxacin, ofloxacin, and levofloxacin was examined in disk diffusion and MIC tests where the majority of the isolates were susceptible to all tested quinolones. In genetic characterization, none of the isolates were positive for qnr or aac(6')-Ib genes and no any target site mutations could be detected in gyrA, gyrB, and parC quinolone resistance determining regions (QRDR). In addition, neighbor-joining phylogenetic tree derived using gyrA gene sequences exhibited two distinct clads comprising; first, current study isolates, and second, quinolone-resistant isolates of human and animal origin. All results suggest that studied strains of S. enterica subsp. enterica isolated from pet turtles are susceptible to quinolones and genetically more conserved with regards to gyrA gene region.


Subject(s)
Animals , Humans , Ciprofloxacin , Diffusion , Levofloxacin , Nalidixic Acid , Ofloxacin , Quinolones , Salmonella enterica , Salmonella Infections , Salmonella , Trees , Turtles
2.
Laboratory Animal Research ; : 84-91, 2017.
Article in English | WPRIM | ID: wpr-204558

ABSTRACT

The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila, A. caviae, Citrobacter freundii, Salmonella enterica, Edwardsiella tarda, Pseudomonas aeruginosa, and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa. MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla, C. freundii, P. mirabilis, and S. enterica. Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.


Subject(s)
Animals , Aeromonas hydrophila , Anti-Bacterial Agents , Anti-Infective Agents , Bacteria , Citrobacter freundii , Cymbopogon , Diffusion , Edwardsiella tarda , Gram-Negative Bacteria , Guinea Pigs , Mirabilis , Oils, Volatile , Proteus mirabilis , Pseudomonas aeruginosa , Salmonella enterica , Turtles
3.
Laboratory Animal Research ; : 195-201, 2017.
Article in English | WPRIM | ID: wpr-101381

ABSTRACT

Pet turtles are well-known to harbor an array of bacterial pathogens which can cause zoonotic infections in humans as well as opportunistic infections in the turtles itself. Essential oils are the natural plant extracts which have been traditionally used for disease treatment. In the present study, the essential oil of lavender (EOL) was examined for its antibacterial activity against thirty-eight strains of turtle-borne pathogenic bacteria belonging to seven species; Aeromonas hydrophila, A. caviae, A. dhakensis, Citrobacter freundii, Proteus mirabilis, Salmonella enterica and Pseudomonas aeruginosa. Antibacterial activity of EOL was tested by means of disk diffusion, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) tests. In addition, the antimicrobial susceptibility pattern of 11 commonly used antimicrobials was examined and the multiple antibiotic resistance (MAR) index was calculated. The results revealed that EOL was active against all tested turtle-borne pathogenic bacteria except P. aeruginosa. The range of MIC and MBC values of EOL against isolates except P. aeruginosa were recorded as 0.5-1% (V/V) and 0.5-2% (V/V), respectively. The MBC/MIC ratio was detected as <4, revealing that the tested EOL was bactericidal. Besides, most of the isolates were resistant to different antimicrobials in antimicrobial disk diffusion test. MAR index values of the tested strains were ranging from 0.27 to 0.91. The outcomes indicate that EOL has a potential to be used as an antibacterial agent against pathogenic bacteria isolated from pet turtles.


Subject(s)
Animals , Humans , Aeromonas hydrophila , Bacteria , Citrobacter freundii , Diffusion , Drug Resistance, Microbial , Guinea Pigs , Lavandula , Microbial Sensitivity Tests , Oils, Volatile , Opportunistic Infections , Plant Extracts , Proteus mirabilis , Pseudomonas aeruginosa , Salmonella enterica , Turtles , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL