Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Asian Spine Journal ; : 854-862, 2017.
Article in English | WPRIM | ID: wpr-21816

ABSTRACT

STUDY DESIGN: In vitro biomechanical investigation. PURPOSE: To compare the biomechanics of integrated three-screw and four-screw anterior interbody spacer devices and traditional techniques for treatment of degenerative disc disease. OVERVIEW OF LITERATURE: Biomechanical literature describes investigations of operative techniques and integrated devices with four dual-stacked, diverging interbody screws; four alternating, converging screws through a polyether-ether-ketone (PEEK) spacer; and four converging screws threaded within the PEEK spacer. Conflicting reports on the stability of stand-alone devices and the influence of device design on biomechanics warrant investigation. METHODS: Fourteen cadaveric lumbar spines were divided randomly into two equal groups (n=7). Each spine was tested intact, after discectomy (injured), and with PEEK interbody spacer alone (S), anterior lumbar plate and spacer (AP+S), bilateral pedicle screws and spacer (BPS+S), circumferential fixation with spacer and anterior lumbar plate supplemented with BPS, and three-screw (SA3s) or four-screw (SA4s) integrated spacers. Constructs were tested in flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Researchers performed one-way analysis of variance and independent t-testing (p≤0.05). RESULTS: Instrumented constructs showed significantly decreased motion compared with intact except the spacer-alone construct in FE and AR (p≤0.05). SA3s showed significantly decreased range of motion (ROM) compared with AP+S in LB (p≤0.05) and comparable ROM in FE and AR. The three-screw design increased stability in FE and LB with no significant differences between integrated spacers or between integrated spacers and BPS+S in all loading modes. CONCLUSIONS: Integrated spacers provided fixation statistically equivalent to traditional techniques. Comparison of three-screw and four-screw integrated anterior lumbar interbody fusion spacers revealed no significant differences, but the longer, larger-diameter interbody spacer with three-screw design increased stabilization in FE and LB; the diverging four-screw design showed marginal improvement during AR.


Subject(s)
Cadaver , Diskectomy , Equipment Design , In Vitro Techniques , Intervertebral Disc Degeneration , Lumbosacral Region , Pedicle Screws , Range of Motion, Articular , Spine
2.
Asian Spine Journal ; : 35-43, 2014.
Article in English | WPRIM | ID: wpr-178770

ABSTRACT

STUDY DESIGN: An in-vitro study. PURPOSE: The current study is aimed at investigating the differences in stability between short posterior fixation (SPF), hybrid posterior fixation (HPF), and long posterior fixation (LPF) with and without anterior column augmentation using calcium phosphate bone cement (CaP) for treating burst fractures (BFs). OVERVIEW OF LITERATURE: The ideal treatment for thoracolumbar BF is controversial regarding the use of short or LPF constructs. METHODS: Seven human thoracolumbar spines (T9-L4) were tested on a six degree of freedom spine simulator in three physiologic planes, flexion-extension (FE), lateral bending (LB), and axial rotation (AR). Tested surgical constructs included the following: intact, injury (BF), SPF (T12-L2), HPF (T11-L2), LPF (T11-L3), SPF+CaP, HPF+CaP, LPF+CaP, and CaP alone (CaP). Range of motion (ROM) was recorded at T12-L2 in FE, LB, and AR. RESULTS: The reduction in mean ROM trended as follows: LPF>HPF>SPF. Only LPF constructs and HPF with anterior column augmentation significantly reduced mean ROM in FE and LB compared to the intact state. All instrumented constructs (SPF, HPF, and LPF) significantly reduced ROM in FE and LB compared to the injured condition. Furthermore, the instrumented constructs did not provide significant rotational stability. Injecting CaP provided minimal additional stability. CONCLUSIONS: For the injury created, LPF and HPF provided better stability than SPF with and without anterior column augmentation. Therefore, highly unstable fractures may require extended, long or hybrid fusion constructs for optimum stability.


Subject(s)
Humans , Bone Cements , Bone Screws , Calcium , Fracture Fixation , Freedom , Range of Motion, Articular , Spine
3.
Asian Spine Journal ; : 1-7, 2013.
Article in English | WPRIM | ID: wpr-201013

ABSTRACT

STUDY DESIGN: An in vitro biomechanical study. PURPOSE: To evaluate the biomechanics of a novel posterior integrated clamp (IC) that extends on an already implanted construct in comparison to single long continuous bilateral pedicle screw (BPS) and rod stabilization system. OVERVIEW OF LITERATURE: Revision surgery in the thoracolumbar spine often necessitates further instrumentation following a failed previous back surgery. Stability of these reconstructed constructs is not known. METHODS: Six osteoligamentous T12-L5 calf spines were tested on a spine motion simulator in the following configurations: intact, four level constructs (T13-L4), three level constructs (L1-L4), and two level constructs (L2-L4), by varying the ratio between BPS and IC. A load control protocol of 8 Nm moments was applied at a rate of 1degrees/sec to establish the range of motion value for each construct in flexion-extension, lateral bending, and axial rotation. Statistical analysis was performed on raw data using repeated measures analysis of variance and significance was set at p<0.05. RESULTS: On an average, the reduction in motion for the four level continuous pedicle screw and rod construct (67%) was similar to those extended with integrated clamps (64%). Furthermore, for three level and two level constructs, no significant difference was observed between continuous pedicle screw constructs and those revised with the integrated clamps (regardless of the ratio between BPS and IC). CONCLUSIONS: The novel posterior IC showed equivalent biomechanical rigidity to continuous pedicle screw rod constructs in revision scenarios. Clinical studies on posterior rod adjunct systems are necessary to confirm these results.


Subject(s)
Biomechanical Phenomena , Bone Screws , Range of Motion, Articular , Reoperation , Spine
SELECTION OF CITATIONS
SEARCH DETAIL