Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Osong Public Health and Research Perspectives ; (6): 280-285, 2020.
Article | WPRIM | ID: wpr-835142

ABSTRACT

Objectives@#The Korea Centers for Disease Control and Prevention has published “A Guideline for Unknown Disease Outbreaks (UDO).” The aim of this report was to introduce tabletop exercises (TTX) to prepare for UDO in the future. @*Methods@#The UDO Laboratory Analyses Task Force in Korea Centers for Disease Control and Prevention in April 2018, assigned unknown diseases into 5 syndromes, designed an algorithm for diagnosis, and made a panel list for diagnosis by exclusion. Using the guidelines and laboratory analyses for UDO, TTX were introduced. @*Results@#Since September 9th , 2018, the UDO Laboratory Analyses Task Force has been preparing TTX based on a scenario of an outbreak caused by a novel coronavirus. In December 2019, through TTX, individual missions, epidemiological investigations, sample treatments, diagnosis by exclusions, and next generation sequencing analysis were discussed, and a novel coronavirus was identified as the causal pathogen. @*Conclusion@#Guideline and laboratory analyses for UDO successfully applied in TTX. Conclusions drawn from TTX could be applied effectively in the analyses for the initial response to COVID-19, an ongoing epidemic of 2019 - 2020. Therefore, TTX should continuously be conducted for the response and preparation against UDO.

2.
Journal of Korean Medical Science ; : 328-333, 2014.
Article in English | WPRIM | ID: wpr-124861

ABSTRACT

Pertussis is a representative vaccine-preventable disease. However, there have been recent outbreaks in countries where even higher vaccination against the disease. One reason is the emergence of antigenic variants, which are different to vaccine type. In Korea, reported cases have rapidly increased since 2009. Therefore, we analyzed genotype of strains isolated in 2011-2012 by multilocus sequence typing method. As expected, the genotype profiles of tested genes dramatically changed. The major sequence type changed from ST1 to ST2, and new sequence type (ST8) appeared. In the minimum spanning tree, recent isolates belonging to the ACC-I-ST3 subgroup were detected that were composed of ST2, ST3, and ST6. In particular, the ST2 frequency increased to 81%. The novel ST8 was linked to the increased frequency of ST2. In addition, toxic strains carrying the ptxP3 promoter type were confirmed. This ptxP3 type emerged from 2009 and its frequency had increased to 100% in 2012. Based on these results, it can be inferred that the genotypic changes in the currently circulating strains are strongly associated with the recent increasing of pertussis in Korea. Therefore, the surveillance system should be strengthened, and genetic characterization of the isolates should be expanded to the whole genome sequence level.


Subject(s)
Humans , Antigenic Variation , Antigens/genetics , Bacterial Proteins/genetics , Bordetella pertussis/genetics , Genes, Bacterial , Genotype , Pertussis Toxin/genetics , Promoter Regions, Genetic , Republic of Korea , Sequence Analysis, DNA , Whooping Cough/immunology
3.
Tuberculosis and Respiratory Diseases ; : 266-272, 2012.
Article in English | WPRIM | ID: wpr-183485

ABSTRACT

BACKGROUND: Limited data on the incidence and clinical characteristics of adult pertussis infections are available in Korea. METHODS: Thirty-one hospitals and the Korean Centers for Disease Control and Prevention collaborated to investigate the incidence and clinical characteristics of pertussis infections among adults with a bothersome cough in non-outbreak, ordinary outpatient settings. Nasopharyngeal aspirates or nasopharyngeal swabs were collected for polymerase chain reaction (PCR) and culture tests. RESULTS: The study enrolled 934 patients between September 2009 and April 2011. Five patients were diagnosed as confirmed cases, satisfying both clinical and laboratory criteria (five positive PCR and one concurrent positive culture). Among 607 patients with cough duration of at least 2 weeks, 504 satisfied the clinical criteria of the US Centers for Disease Control and Prevention (i.e., probable case). The clinical pertussis cases (i.e., both probable and confirmed cases) had a wide age distribution (45.7+/-15.5 years) and cough duration (median, 30 days; interquartile range, 18.0~50.0 days). In addition, sputum, rhinorrhea, and myalgia were less common and dyspnea was more common in the clinical cases, compared to the others (p=0.037, p=0.006, p=0.005, and p=0.030, respectively). CONCLUSION: The positive rate of pertussis infection may be low in non-outbreak, ordinary clinical settings if a PCR-based method is used. However, further prospective, well-designed, multicenter studies are needed.


Subject(s)
Adult , Humans , Age Distribution , Cough , Dyspnea , Incidence , Outpatients , Polymerase Chain Reaction , Sputum , Whooping Cough
4.
Infection and Chemotherapy ; : 24-31, 2008.
Article in English | WPRIM | ID: wpr-722167

ABSTRACT

BACKGROUND: Polymerase-chain reaction (PCR) detection is useful to diagnosis of pertussis at initial stage because the growth rate of Bordetella pertussis (B. pertussis) is relatively slow. Currently, the primer set for the insertion sequence IS481 (BP primer) is used widely for PCR detection of B. pertussis. However, the cross-reactivity of BP primer set with Bordetella holmesii (B. holmesii) was reported recently. Therefore, discrimination of B. pertussis and B. holmesii is needed in PCR step. For this reason, we developed new primer sets based on 16S rDNA sequence for diagnostic use and estimated the efficiency of these new primer sets. MATERIALS AND METHODS: The specific PCR primers were designed from the aligned sequence matrix of 16S rDNA genes of various Bordetella species. The specificity of designed primers were estimated using clinically important 4 Bordetella species, B. pertussis, B. holmesii, Bordetella parapertussis (B. parapertussis) and Bordetella bronchiseptica (B. bronchiseptica). The sensitivity to B. pertussis of designed primers was also estimated and compared with BP primer set. RESULTS: As the results, the developed new primer set successfully distinguished B. pertussis and other Bordetella species containing B. holmesii. In the sensitivity assay, the detectable limits of 16S-F2/16S-R1 primer set for B. pertussis were revealed as 5 pg of genomic DNA and 105 cells/mL of cell suspension. In addition to these, identical results between BP with primer and new primer were obtained in clinical samples. CONCLUSION: In this study, the specific primer set for B. pertussis was developed based on 16S rDNA sequence and this primer set did not show cross-reactivity to B. holmesii. In addition to these, the applicability of this primer set to the clinical specimens was also confirmed.


Subject(s)
Bordetella , Bordetella bronchiseptica , Bordetella parapertussis , Bordetella pertussis , Discrimination, Psychological , DNA , DNA, Ribosomal , Polymerase Chain Reaction , Sensitivity and Specificity , Whooping Cough
5.
Infection and Chemotherapy ; : 24-31, 2008.
Article in English | WPRIM | ID: wpr-721662

ABSTRACT

BACKGROUND: Polymerase-chain reaction (PCR) detection is useful to diagnosis of pertussis at initial stage because the growth rate of Bordetella pertussis (B. pertussis) is relatively slow. Currently, the primer set for the insertion sequence IS481 (BP primer) is used widely for PCR detection of B. pertussis. However, the cross-reactivity of BP primer set with Bordetella holmesii (B. holmesii) was reported recently. Therefore, discrimination of B. pertussis and B. holmesii is needed in PCR step. For this reason, we developed new primer sets based on 16S rDNA sequence for diagnostic use and estimated the efficiency of these new primer sets. MATERIALS AND METHODS: The specific PCR primers were designed from the aligned sequence matrix of 16S rDNA genes of various Bordetella species. The specificity of designed primers were estimated using clinically important 4 Bordetella species, B. pertussis, B. holmesii, Bordetella parapertussis (B. parapertussis) and Bordetella bronchiseptica (B. bronchiseptica). The sensitivity to B. pertussis of designed primers was also estimated and compared with BP primer set. RESULTS: As the results, the developed new primer set successfully distinguished B. pertussis and other Bordetella species containing B. holmesii. In the sensitivity assay, the detectable limits of 16S-F2/16S-R1 primer set for B. pertussis were revealed as 5 pg of genomic DNA and 105 cells/mL of cell suspension. In addition to these, identical results between BP with primer and new primer were obtained in clinical samples. CONCLUSION: In this study, the specific primer set for B. pertussis was developed based on 16S rDNA sequence and this primer set did not show cross-reactivity to B. holmesii. In addition to these, the applicability of this primer set to the clinical specimens was also confirmed.


Subject(s)
Bordetella , Bordetella bronchiseptica , Bordetella parapertussis , Bordetella pertussis , Discrimination, Psychological , DNA , DNA, Ribosomal , Polymerase Chain Reaction , Sensitivity and Specificity , Whooping Cough
SELECTION OF CITATIONS
SEARCH DETAIL