Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add filters








Year range
1.
The Korean Journal of Physiology and Pharmacology ; : 55-62, 2019.
Article in English | WPRIM | ID: wpr-728025

ABSTRACT

HM41322 is a novel oral sodium-glucose cotransporter (SGLT) 1/2 dual inhibitor. In this study, the in vitro and in vivo pharmacokinetic and pharmacologic profiles of HM41322 were compared to those of dapagliflozin. HM41322 showed a 10-fold selectivity for SGLT2 over SGLT1. HM41322 showed an inhibitory effect on SGLT2 similar to dapagliflozin, but showed a more potent inhibitory effect on SGLT1 than dapagliflozin. The maximum plasma HM41322 level after single oral doses at 0.1, 1, and 3 mg/kg were 142, 439, and 1830 ng/ml, respectively, and the T(1/2) was 3.1 h. HM41322 was rapidly absorbed and reached the circulation within 15 min. HM41322 maximized urinary glucose excretion by inhibiting both SGLT1 and SGLT2 in the kidney. HM41322 3 mg/kg caused the maximum urinary glucose excretion in normoglycemic mice (19.32±1.16 mg/g) at 24 h. In normal and diabetic mice, HM41322 significantly reduced glucose excursion. Four-week administration of HM41322 in db/db mice reduced HbA1c in a dose dependent manner. Taken together, HM41322 showed a favorable preclinical profile of postprandial glucose control through dual inhibitory activities against SGLT1 and SGLT2.


Subject(s)
Animals , Mice , Diabetes Mellitus , Glucose , In Vitro Techniques , Kidney , Plasma
2.
The Korean Journal of Physiology and Pharmacology ; : 241-247, 2014.
Article in English | WPRIM | ID: wpr-727670

ABSTRACT

To investigate the underlying mechanisms of C18 fatty acids (stearic acid, oleic acid, linoleic acid and alpha-linolenic acid) on mast cells, we measured the effect of C18 fatty acids on intracellular Ca2+ mobilization and histamine release in RBL-2H3 mast cells. Stearic acid rapidly increased initial peak of intracellular Ca2+ mobilization, whereas linoleic acid and alpha-linolenic acid gradually increased this mobilization. In the absence of extracellular Ca2+, stearic acid (100 microM) did not cause any increase of intracellular Ca2+ mobilization. Both linoleic acid and alpha-linolenic acid increased intracellular Ca2+ mobilization, but the increase was smaller than that in the presence of extracellular Ca2+. These results suggest that C18 fatty acid-induced intracellular Ca2+ mobilization is mainly dependent on extracellular Ca2+ influx. Verapamil dose-dependently inhibited stearic acid-induced intracellular Ca2+ mobilization, but did not affect both linoleic acid and alpha-linolenic acid-induced intracellular Ca2+ mobilization. These data suggest that the underlying mechanism of stearic acid, linoleic acid and alpha-linolenic acid on intracellular Ca2+ mobilization may differ. Linoleic acid and alpha-linolenic acid significantly increased histamine release. Linoleic acid (C18:2: omega-6)-induced intracellular Ca2+ mobilization and histamine release were more prominent than alpha-linolenic acid (C18:3: omega-3). These data support the view that the intake of more alpha-linolenic acid than linoleic acid is useful in preventing inflammation.


Subject(s)
alpha-Linolenic Acid , Fatty Acids , Histamine Release , Inflammation , Linoleic Acid , Mast Cells , Oleic Acid , Verapamil
3.
The Korean Journal of Physiology and Pharmacology ; : 339-345, 2013.
Article in English | WPRIM | ID: wpr-727711

ABSTRACT

We investigated the antihypertensive effect of lutein on NG-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats. Daily oral administration of L-NAME (40 mg/kg)-induced a rapid progressive increase in mean arterial pressure (MAP). L-NAME significantly increased MAP from the first week compared to that in the control and reached 193.3+/-9.6 mmHg at the end of treatment. MAP in the lutein groups was dose-dependently lower than that in the L-NAME group. Similar results were observed for systolic and diastolic blood pressure of L-NAME-induced hypertensive rats. The control group showed little change in heart rate for 3 weeks, whereas L-NAME significantly reduced heart rate from 434+/-26 to 376+/-33 beats/min. Lutein (2 mg/kg) significantly prevented the reduced heart rate induced by L-NAME. L-NAME caused hypertrophy of heart and kidney, and increased plasma lipid peroxidation four-fold but significantly reduced plasma nitrite and glutathione concentrations, which were significantly prevented by lutein in a dose-dependent manner. These findings suggest that lutein affords significant antihypertensive and antioxidant effects against L-NAME-induced hypertension in rats.


Subject(s)
Animals , Rats , Administration, Oral , Antioxidants , Arterial Pressure , Blood Pressure , Glutathione , Heart , Heart Rate , Hypertension , Hypertrophy , Kidney , Lipid Peroxidation , Lutein , NG-Nitroarginine Methyl Ester , Plasma
4.
The Korean Journal of Physiology and Pharmacology ; : 313-317, 2011.
Article in English | WPRIM | ID: wpr-728325

ABSTRACT

The effects of extremely low frequency electromagnetic fields (EMF) on intracellular Ca2+ mobilization and cellular function in RBL 2H3 cells were investigated. Exposure to EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h did not produce any cytotoxic effects in RBL 2H3 cells. Melittin, ionomycin and thapsigargin each dose-dependently increased the intracellular Ca2+ concentration. The increase of intracellular Ca2+ induced by these three agents was not affected by exposure to EMF (60 Hz, 1 mT) for 4 or 16 h in RBL 2H3 cells. To investigate the effect of EMF on exocytosis, we measured beta-hexosaminidase release in RBL 2H3 cells. Basal release of beta-hexosaminidase was 12.3+/-2.3% in RBL 2H3 cells. Exposure to EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h did not affect the basal or 1 microM melittin-induced beta-hexosaminidase release in RBL 2H3 cells. This study suggests that exposure to EMF (60 Hz, 0.1 or 1 mT), which is the limit of occupational exposure, has no influence on intracellular Ca2+ mobilization and cellular function in RBL 2H3 cells.


Subject(s)
beta-N-Acetylhexosaminidases , Electromagnetic Fields , Exocytosis , Ionomycin , Melitten , Occupational Exposure , Thapsigargin
5.
The Korean Journal of Physiology and Pharmacology ; : 163-167, 2010.
Article in English | WPRIM | ID: wpr-727804

ABSTRACT

This study investigated the effects of the methanol extracts of Morinda citrifolia containing numerous anthraquinone and iridoid on phospholipase A2 (PLA2) isozyme. PLA2 activity was measured using various PLA2 substrates, including 10-pyrene phosphatidylcholine, 1-palmitoyl-2-[14C]arachidonyl phosphatidylcholine ([14C]AA-PC), and [3H]arachidonic acid (AA). The methanol extracts suppressed melittin-induced [3H]AA release in a concentration-dependent manner in RAW 264.7 cells, and inhibited cPLA2/sPLA2-induced hydrolysis of [14C]AA-PC in a concentration- and time-dependent manner. A Dixon plot showed that the inhibition by methanol extracts on cPLA2 and sPLA2 appeared to be competitive with inhibition constants (Ki ) of 3.7microgram/ml and 12.6microgram/ml, respectively. These data suggest that methanol extracts of Morinda citrifolia inhibits both Ca2+-dependent PLA2 such as, cPLA2 and sPLA2. Therefore, Morinda citrifolia may possess anti-inflammatory activity secondary to Ca2+-dependent PLA2 inhibition.


Subject(s)
Arachidonic Acid , Cytosol , Hydrolysis , Methanol , Morinda , Phosphatidylcholines , Phospholipases , Phospholipases A2
6.
The Korean Journal of Physiology and Pharmacology ; : 427-433, 2010.
Article in English | WPRIM | ID: wpr-727387

ABSTRACT

This study was conducted to investigate the effects of extremely low frequency electromagnetic fields (EMF) on signal pathway in plasma membrane of cultured cells (RAW 264.7 cells and RBL 2H3 cells), by measuring the activity of phospholipase A2 (PLA2), phospholipase C (PLC) and phospholipase D (PLD). The cells were exposed to the EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h. The basal and 0.5 microM melittin-induced arachidonic acid release was not affected by EMF in both cells. In cell-free PLA2 assay, we failed to observe the change of cPLA2 and sPLA2 activity. Also both PLC and PLD activities did not show any change in the two cell lines exposed to EMF. This study suggests that the exposure condition of EMF (60 Hz, 0.1 or 1 mT) which is 2.4 fold higher than the limit of occupational exposure does not induce phospholipases-associated signal pathway in RAW 264.7 cells and RBL 2H3 cells.


Subject(s)
Arachidonic Acid , Cell Line , Cell Membrane , Cells, Cultured , Electromagnetic Fields , Magnets , Occupational Exposure , Phospholipase D , Phospholipases , Phospholipases A2 , Pyridoxal , Signal Transduction , Type C Phospholipases
7.
The Korean Journal of Physiology and Pharmacology ; : 29-35, 2010.
Article in English | WPRIM | ID: wpr-727344

ABSTRACT

We have shown that myosin light chain kinase (MLCK) was required for the off-contraction in response to the electrical field stimulation (EFS) of feline esophageal smooth muscle. In this study, we investigated whether protein kinase C (PKC) may require the on-contraction in response to EFS using feline esophageal smooth muscle. The contractions were recorded using an isometric force transducer. On-contraction occurred in the presence of NG-nitro-L-arginine methyl ester (L-NAME), suggesting that nitric oxide acts as an inhibitory mediator in smooth muscle. The excitatory composition of both contractions was cholinergic dependent which was blocked by tetrodotoxin or atropine. The on-contraction was abolished in Ca2+-free buffer but reappeared in normal Ca2+-containing buffer indicating that the contraction was Ca2+ dependent. 4-aminopyridine (4-AP), voltage-dependent K+ channel blocker, significantly enhanced on-contraction. Aluminum fluoride (a G-protein activator) increased on-contraction. Pertussis toxin (a Gi inactivator) and C3 exoenzyme (a rhoA inactivator) significantly decreased on-contraction suggesting that Gi or rhoA protein may be related with Ca2+ and K+ channel. ML-9, a MLCK inhibitor, significantly inhibited on-contraction, and chelerythrine (PKC inhibitor) affected on the contraction. These results suggest that endogenous cholinergic contractions activated directly by low-frequency EFS may be mediated by Ca2+, and G proteins, such as Gi and rhoA, which resulted in the activation of MLCK, and PKC to produce the contraction in feline distal esophageal smooth muscle.


Subject(s)
4-Aminopyridine , Aluminum , Aluminum Compounds , Atropine , Azepines , Benzophenanthridines , Contracts , Esophagus , Fluorides , GTP-Binding Proteins , Muscle, Smooth , Myosin-Light-Chain Kinase , NG-Nitroarginine Methyl Ester , Nitric Oxide , Pertussis Toxin , Protein Kinase C , rhoA GTP-Binding Protein , Tetrodotoxin , Transducers
8.
The Korean Journal of Physiology and Pharmacology ; : 295-300, 2009.
Article in English | WPRIM | ID: wpr-727521

ABSTRACT

It was evaluated the inhibitory action of quercetin-3-O-beta-D-glucuronopyranoside (QGC) on reflux esophagitis and gastritis in rats. QGC was isolated from the herba of Rumex Aquaticus. Reflux esophagitis or gastritis was induced surgically or by administering indomethacin, respectively. Oral QGC decreased ulcer index, injury area, gastric volume, and acid output and increased gastric pH as compared with quercetin. Furthermore, QGC significantly decreased gastric lesion sizes induced by exposing the gastric mucosa to indomethacin. Malondialdehyde levels were found to increase significantly after inducing reflux esophagitis, and were reduced by QGC, but not by quercetin or omeprazole. These results show that QGC can inhibit reflux esophagitis and gastritis in rats.


Subject(s)
Animals , Rats , Esophagitis, Peptic , Gastric Mucosa , Gastritis , Hydrogen-Ion Concentration , Indomethacin , Lipid Peroxidation , Malondialdehyde , Omeprazole , Quercetin , Rumex , Ulcer
9.
The Korean Journal of Physiology and Pharmacology ; : 321-326, 2009.
Article in English | WPRIM | ID: wpr-727517

ABSTRACT

The antioxidant effect of CoQ10 on N-nitrosodiethylamine (NDEA)-induced oxidative stress was investigated in mice. Food intake and body weight were similar in both CoQ10 and control groups during the 3-week experimental period. NDEA significantly increased the activities of typical marker enzymes of liver function (AST, ALT and ALP) both in control and CoQ10 groups. However, the increase of plasma aminotransferase activity was significantly reduced in the CoQ10 group. Lipid peroxidation in various tissues, such as heart, lung, liver, kidney, spleen and plasma, was significantly increased by NDEA, but this increase was significantly reduced by 100 mg/kg of CoQ10. Superoxide dismutase activity increased significantly upon NDEA-induced oxidative stress in both the control and CoQ10 groups with the effect being less in the CoQ10 group. Catalase activity decreased significantly in both the control and CoQ10 groups treated with NDEA, again with the effect being less in the CoQ10 group. The lesser effect on superoxide dismutase and catalase in the NDEA-treated CoQ10 group is indicative of the protective effect CoQ10. Thus, CoQ10 can offer useful protection against NDEA-induced oxidative stress.


Subject(s)
Animals , Mice , Antioxidants , Body Weight , Catalase , Diethylnitrosamine , Eating , Heart , Kidney , Lipid Peroxidation , Liver , Lung , Oxidative Stress , Plasma , Reactive Oxygen Species , Spleen , Superoxide Dismutase , Ubiquinone
10.
The Korean Journal of Physiology and Pharmacology ; : 343-347, 2008.
Article in English | WPRIM | ID: wpr-728665

ABSTRACT

This study was carried out to investigate the wound healing effect of caffeic acid in skin-incised mice. Caffeic acid showed significant effects on anti-inflammatory activity and wound healing, such as myeloperoxidase activity, lipid peroxidation, phospholipase A2 activity and collagen-like polymer synthesis, in incised-wound tissue. On the other hand, it significantly stimulated collagen-like polymer synthesis in NIH 3T3 fibroblast cells, while inhibited both silica-induced reactive oxygen species generation and melittin-induced arachidonic acid release and PGE2 production in Raw 264.7 cells, and histamine release in RBL 2H3 cells stimulated by melittin or arachidonic acid. Therefore, caffeic acid appears to have a potent antioxidant and anti-inflammatory effect in cell culture system, which may be related to wound healing in skin-incised mice.


Subject(s)
Animals , Mice , Arachidonic Acid , Caffeic Acids , Cell Culture Techniques , Collagen , Dinoprostone , Fibroblasts , Hand , Histamine , Histamine Release , Lipid Peroxidation , Melitten , Peroxidase , Phospholipases A2 , Polymers , Reactive Oxygen Species , Wound Healing
11.
The Korean Journal of Physiology and Pharmacology ; : 113-120, 2000.
Article in English | WPRIM | ID: wpr-727748

ABSTRACT

To investigate the mechanism of smooth muscle contraction induced by emptying of intracellular Ca2+ stores, we measured isometric contraction and 45Ca2+ influx. CaCl2 increased Ca2+ store emptying- induced contraction in dose-dependent manner, but phospholipase C activity was not affected by the Ca2+ store emptying-induced contraction. The contraction was inhibited by voltage-dependent Ca2+ channel antagonists dose dependently, but not by TMB-8 (intracellular Ca2+ release blocker). Both PKC inhibitors (H-7 and staurosporine) and tyrosine kinase inhibitors (genistein and methyl 2,5-dihydroxycinnamic acid) significantly inhibited the contraction, but calmodulin antagonists (W-7 and trifluoperazine) had no inhibitory effect on the contraction. The combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were greater than that of each one alone. In Ca2+ store-emptied condition, 45Ca2+ influx was significantly inhibited by verapamil, H-7 or genistein but not by trifluoperazine. However combined inhibitory effects of protein kinase inhibitors, H-7 and genistein, together with verapamil were not observed. Therefore, this kinase pathway may modulate the sensitivity of contractile protein. These results suggest that contraction induced by emptying of intracellular Ca2+ stores was mediated by influx of extracellular Ca2+ through voltage-dependent Ca2+ channel, also protein kinase C and/or tyrosine kinase pathway modulates the Ca2+ sensitivity of contractile protein.


Subject(s)
Animals , Cats , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine , Calmodulin , Genistein , Isometric Contraction , Muscle, Smooth , Phosphotransferases , Protein Kinase C , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Trifluoperazine , Type C Phospholipases , Verapamil
12.
The Korean Journal of Physiology and Pharmacology ; : 275-282, 1999.
Article in English | WPRIM | ID: wpr-728247

ABSTRACT

Muscle strips and muscle cells from cat stomach were used to investigate whether spontaneously formed cyclic nucleotides were involved in the inhibition of gastric smooth muscle contraction. A phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX), increased the levels of both cyclic GMP (cGMP) and cyclic AMP (cAMP) in resting state cells, while decreasing acetylcholine-induced muscle contraction. Under the influence of IBMX, SQ22536, an adenylyl cyclase inhibitor and methylene blue, a guanylyl cyclase inhibitor completely blocked increases in cAMP and cGMP respectively, without any effect on contraction. However, the combination of SQ22536 and methylene blue completely blocked increases in both cAMP and cGMP levels and stimulated contractions markedly even in the presence of IBMX. Muscle contraction inhibitors such as isoprenaline, vasoactive intestinal polypeptide and sodium nitroprusside also appeared to increase cyclic nucleotide levels which decreased contraction. Which nucleotide increased the most was dependent on the agonist used. Therefore, irrespective of the cyclic nucleotide class, the spontaneous formation of cyclic nucleotides should be considered in evaluating the mechanism of gastric smooth muscle relaxation.


Subject(s)
Animals , Cats , 1-Methyl-3-isobutylxanthine , Adenylyl Cyclases , Cyclic AMP , Cyclic GMP , Guanylate Cyclase , Isoproterenol , Methylene Blue , Muscle Cells , Muscle Contraction , Muscle Relaxation , Muscle, Smooth , Nitroprusside , Nucleotides, Cyclic , Relaxation , Stomach , Vasoactive Intestinal Peptide
SELECTION OF CITATIONS
SEARCH DETAIL