Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Indian J Biochem Biophys ; 2013 Feb; 50(1): 54-63
Article in English | IMSEAR | ID: sea-147287

ABSTRACT

The consumption of soybean is limited worldwide, despite being highly nutritious and having versatile uses, due to the presence of grassy, beany and rancid off-flavour. The lipoxygenase-2 (LOX-2) is the key enzyme responsible for the production of volatiles released from the beans, which cause off-flavour in soy products. In this study, a 2.6-kb full-length lox2 gene (NCBI accession No. JQ929619.1) was isolated and cloned from soybean (Glycine max L. Merril) cv. Pusa 16. The cloned cDNA sequence of lox2 gene showed the complete open reading frame (ORF) of a putative protein, having 866 amino acids with start codon present at the foremost position and stop codon at the end. The theoretical pI of predicted protein was 6.22. A hydropathy profile calculated from the amino acid sequence resembled those of dicot LOXs, suggesting conservation of the secondary structure of these enzymes. The LOX-2 showed conserved six Histidine residues within a span of 520 to 590 amino acid position, a signature element for the enzyme activity. The lox2 gene was expressed using pET vector in prokaryotic expression system. The recombinant LOX-2 protein was purified after induction with IPTG (isopentyl thiogalactoside). A prominent band of 97 kDa was observed, when affinity purified fractions were analyzed by SDS-PAGE. The purified protein was characterized for the enzyme activity, substrate preference and Km. Inhibitor studies with natural antioxidant molecules present in soybean revealed α-tocopherol to be the most effective inhibitor of LOX-2.


Subject(s)
Amino Acid Sequence , Base Sequence , Cloning, Molecular , Enzyme Activation , Enzyme Stability , Escherichia coli/enzymology , Escherichia coli/genetics , India , Lipoxygenase/chemistry , Lipoxygenase/genetics , Lipoxygenase/isolation & purification , Molecular Sequence Data , Recombinant Proteins/metabolism , Glycine max/enzymology , Glycine max/genetics
2.
J Biosci ; 2012 Jun; 37 (2): 269-276
Article in English | IMSEAR | ID: sea-161671

ABSTRACT

Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of approximately 18.6+1.00 kDa. AnPI had high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for 10 min. AnPI exhibited effective against total proteolytic activity and trypsin-like activity, but did not show any inhibitory effect on chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant reduction in mean larval and pupal weight of H. armigera. The results provide important clues in designing strategies by using the proteinase inhibitors (PIs) from the A. nilotica that can be expressed in genetically engineered plants to confer resistance to H. armigera.

3.
Indian J Biochem Biophys ; 1999 Jun; 36(3): 207-10
Article in English | IMSEAR | ID: sea-27127

ABSTRACT

Response of Lathyrus sativus plants to water stress showed that ABA responsive genes such as PLE 25, TAS 14 and RAB 17 are synthesized constitutively, the levels of which decline gradually with increase in water stress or ABA levels. Proline accumulation was highest in leaves (65-fold) followed by stem (56-fold), root (38-fold) and marginal increase in etiolated seedlings. Proline increase was also observed in plant parts not exposed to light.


Subject(s)
Fabaceae/genetics , Plants, Medicinal , Proline/metabolism , RNA, Messenger/metabolism , Water
4.
Indian J Biochem Biophys ; 1992 Feb; 29(1): 93-6
Article in English | IMSEAR | ID: sea-27150

ABSTRACT

Genomic DNA isolated from barley cv. NP 113 and its high lysine mutant Notch-2, and restricted with different restriction enzymes was hybridized with B1 and C-hordein DNA probes. Similar Southern hybridization patterns were observed between NP 113 and Notch-2. Dot blot hybridization analysis of RNA isolated at different developmental stages and from different tissues of seed showed temporal as well as tissue specific expression. The results obtained indicate that regulation at the level of transcription/post transcription may be responsible for lower accumulation of hordein in mutant Notch-2.


Subject(s)
Glutens , Hordeum/genetics , Lysine/genetics , Mutation , Plant Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL