Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mem. Inst. Oswaldo Cruz ; 101(supl.1): 323-326, Oct. 2006. graf, ilus
Article in English | LILACS | ID: lil-441267

ABSTRACT

In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.


Subject(s)
Animals , Humans , Caffeine/pharmacology , Protein Kinase C/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Schistosoma mansoni/genetics , rho GTP-Binding Proteins/genetics , Genes, Helminth , Mutation , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Schistosoma mansoni/metabolism , Signal Transduction/genetics , rho GTP-Binding Proteins/metabolism
2.
Genet. mol. biol ; 28(2): 321-327, 2005. ilus
Article in English | LILACS | ID: lil-416305

ABSTRACT

The secretion of bacterial virulence factors and flagellar components requires the assistance of specific type III and flagellar chaperones. Standard computational annotation of the genome of Xanthomonas axonopodis pv citri, a plant pathogen that causes citrus canker, initially did not identify any genes belonging to these chaperone categories since the primary sequence homology between them was very low. However, in a search for hypothetical proteins with characteristics similar to these chaperones, we have now identified 30 chromosomal and 10 plasmidial potential genes encoding chaperones belonging to types III/IV, and flagellar secretion systems in this organism. The significance of these findings is discussed.


Subject(s)
Animals , Bacterial Proteins , Molecular Chaperones , Xanthomonas axonopodis , Type III Secretion Systems , Type IV Secretion Systems
3.
Mem. Inst. Oswaldo Cruz ; 92(5): 625-9, Sept.-Oct. 1997. tab
Article in English | LILACS | ID: lil-194205

ABSTRACT

Continuing the Schistosoma mansoni Genome Project 363 new templates were sequenced generating 205 more ESTs corresponding to 91 genes. Seventy four of theses genes (81 per cent) had not previously been descibed in S. mansoni. Among the newly discovered genes there are several of significant biological interest such as synaptophysin, NIFs-like and rho-GDP dissociation inhibitor.


Subject(s)
Animals , Schistosoma mansoni/genetics , Genome
SELECTION OF CITATIONS
SEARCH DETAIL