ABSTRACT
Background & objectives: The present study was carried out on stored rice variety PAU 201 in Punjab that was not permitted for milling and public distribution due to the presence of damaged grains at levels exceeding the regulatory limits of 4.75 per cent. The aim of the study was to determine fungal and aflatoxin contamination in the rice samples to assess hazard from the presence of damaged grains. Presence of iron in discoloured rice grains was also assessed. Methods: Stored samples of paddy of PAU 201 rice variety were collected from six districts of Punjab, milled and analysed for presence of fungal and aflatoxin contamination. Scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis and Prussian blue staining was used to determine fungal spores and presence of iron, respectively. Results: Aflatoxin analysis of rice samples indicated that none exceeded the Food Safety and Standards (Contaminants, Toxins and Residues) Regulations, 2011 tolerance limit of 30 μg/kg and majority of the samples had levels <15 μg/kg. The proportion of damaged grains exceeding the limit of 5 per cent was observed in 85.7 per cent of the samples. SEM and Prussian blue staining and EDX analysis of black tipped and pin point damaged rice grains did not show presence of fungal structures and presence of iron. Interpretation & conclusions: The results of the study indicated that the stored rice samples did not pose any health concern with respect to aflatoxin contamination as per the criteria laid down by the Food Safety and Standards Authority of India.
Subject(s)
Aflatoxins/analysis , Ferrocyanides , Food Contamination/analysis , Food Microbiology/standards , Food Microbiology/statistics & numerical data , India , Microscopy, Electron, Scanning , Oryza/chemistry , Oryza/microbiology , Spectrometry, X-Ray Emission , Spores, Fungal/isolation & purificationABSTRACT
There has been an increased influx of probiotic products in the Indian market during the last decade. However, there has been no systematic approach for evaluation of probiotics in food to ensure their safety and efficacy. An initiative was, therefore, taken by the Indian Council of Medical Research (ICMR) along with the Department of Biotechnology (DBT) to formulate guidelines for regulation of probiotic products in the country. These guidelines define a set of parameters required for a product/strain to be termed as ‘probiotic’. These include identification of the strain, in vitro screening for probiotic characteristics, animal studies to establish safety and in vivo animal and human studies to establish efficacy. The guidelines also include requirements for labeling of the probiotic products with strain specification, viable numbers at the end of shelf life, storage conditions, etc., which would be helpful to the consumers to safeguard their own interest.
Subject(s)
Animals , Consumer Product Safety , Food Labeling , Food Microbiology/methods , Humans , India , Models, Animal , Probiotics/analysis , Probiotics/standardsABSTRACT
This paper traces the evolution of measures and parameters for the evaluation of science and scientific journals from the first attempts during the early part of the last century to the development of the most popular, current and widely used metrics viz., citations, impact factor (IF) etc. The identification of measures of evaluation in science and scientific reporting paralled the post-war increase in funding in the United States of America. Biomedical and medical sciences continue to garner a major share, estimated to be almost two-thirds of total research and development funding of over US$ 350 billion. There has been a concomitant growth in the publications in learned journals. About 1.4 million papers are published every year in an estimated 20,000 journals. In India there are an estimated 100 journals in medical sciences. With a steady increase of about 10% every year, the competition for grants, awards, rewards etc., is fierce. This unrelenting increase in number of scientists and the resultant competition, the limitation of peer review was felt. A search was on for new quantifiable measures for informed decision making for funding, awards, rewards, etc. Now virtually all major decisions all over the world are based on some data linked to publications and/or citations. The concept of citations as tool for ‘evaluating’ science was first proposed by Eugene Garfield in 1955. The availability of Science Citation Index (SCI), Journal Citation Reports (JCR), Web of Science etc. and the relative ease with which they could be used (and abused) has spawned an entirely new area bibliometrics/scientometrics. As only a limited number of journals could be included in the Thomson Reuters (TR) databases (currently numbering about 10500), analyses based on such a limited dataset (also selected in a non-transparent way by the TR) has been widely and severely criticized by both the developed and developing countries. Yet, studies have shown that citation-based data and indicators (warts and all) could still be put to productive use for purposes of evaluation (as scientists just love numbers). There were simultaneous efforts to find alternative indicators using the TR databases, and through other innovative methods. Some of these include Google Scholar, PageRank, H-index, Y-factor, Faculty of 1000, Eigen Factor etc. The advantages and limitations of these indices are discussed. There is a need for a more critical look at these parameters from the Indian perspective to compute/ device/adapt these measures to suit our needs. There are 205 journals under the category Physiology and 201 in the Pharmacology category listed in the JCR. There are four major Indian journals under the category of Physiology and Pharmacology and none of them are listed in the TR databases reflecting the limitation of these databases. Eventually, and in the long run, the quality of our journals needs to be improved as the current era of globalization and web-access provides both a challenge and an opportunity for the science and scientific journals published from India to get increased global visibility.