Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Type of study
Language
Year range
1.
Braz. j. med. biol. res ; 39(6): 795-799, June 2006. graf
Article in English | LILACS | ID: lil-428270

ABSTRACT

The present study investigates the antinociceptive effect of the pyrazolyl-thiazole derivative 2-(5-trichloromethyl-5-hydroxy-3-phenyl-4,5-dihydro-1 H-pyrazol-1-yl)-4-(4-bromophenyl)-5-methylthiazole (B50) in mice. Male albino Swiss mice (30-40 g) were used in the acetic acid-induced abdominal writhes and tail-immersion tests. B50 caused dose-dependent antinociception (8, 23 and 80 µmol/kg, sc) in the acetic acid writhing assay (number of writhes: vehicle: 27.69 ± 6.15; B50 (8 µmol/kg): 16.92 ± 3.84; B50 (23 µmol/kg): 13.85 ± 3.84; B50 (80 µmol/kg): 9.54 ± 3.08; data are reported as means ± SEM for 9 animals per group). On the other hand, B50 did not cause antinociception in the tail immersion assay. Naloxone (2.75 µmol/kg, sc) prevented B50-induced antinociception (number of writhes: vehicle-saline: 31.11 ± 3.15; vehicle-naloxone: 27.41 ± 3.70; B50 (80 µmol/kg)-saline: 8.70 ± 3.33; B50 (80 µmol/kg)-naloxone: 31.84 ± 4.26; morphine-saline: 2.04 ± 3.52; morphine-naloxone: 21.11 ± 4.26; 8-9 animals per group). The removal of the methyl group of the thiazole ring of B50 or substitution of the bromo substituent with the methyl at position 4 of the phenyl group, which is attached to the thiazole ring of B50, resulted in loss of activity, suggesting that these substituents are important for antinociceptive activity. B50 had no effect on spontaneous locomotion or rotarod performance, indicating that the antinociceptive effect of B50 is not related to nonspecific motor effects. The antinociceptive profile of B50 seems to be closer to nonsteroidal anti-inflammatory drugs than to classic opioid agents, since it had no analgesic effect in a thermally motivated test.


Subject(s)
Animals , Male , Mice , Analgesics/pharmacology , Pain Measurement/drug effects , Pyrazoles/pharmacology , Thiazoles/pharmacology , Acetic Acid , Dose-Response Relationship, Drug , Motor Activity/drug effects , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Pyrazoles/chemistry , Reaction Time , Thiazoles/chemistry
2.
Braz. j. med. biol. res ; 37(10): 1531-1540, Oct. 2004. tab, graf
Article in English | LILACS | ID: lil-383035

ABSTRACT

The antinociceptive effect of six novel synthetic pyrazolines (3-ethoxymethyl-5-ethoxycarbonyl-1H-pyrazole (Pz 1) and its corresponding 1-substituted methyl (Pz 2) and phenyl (Pz 3) analogues, and 3-(1-ethoxyethyl)-5-ethoxycarbonyl-1H-pyrazole (Pz 4) and its corresponding 1-substituted methyl (Pz 5) and phenyl (Pz 6) analogues) was evaluated by the tail immersion test in adult male albino mice. The animals (N = 11-12 in each group) received vehicle (5 percent Tween 80, 10 ml/kg, sc) or 1.5 mmol/kg of each of the pyrazolines (Pz 1-Pz 6), sc. Fifteen, thirty and sixty minutes after drug administration, the mice were subjected to the tail immersion test. Thirty minutes after drug administration Pz 2 and Pz 3 increased tail withdrawal latency (vehicle = 3.4 ± 0.2; Pz 2 = 5.2 ± 0.4; Pz 3 = 5.9 ± 0.4 s; mean ± SEM), whereas the other pyrazolines did not present antinociceptive activity. Dose-effect curves (0.15 to 1.5 mmol/kg) were constructed for the bioactive pyrazolines. Pz 2 (1.5 mmol/kg, sc) impaired motor coordination in the rotarod and increased immobility in the open-field test. Pz 3 did not alter rotarod performance and spontaneous locomotion, but increased immobility in the open field at the dose of 1.5 mmol/kg. The involvement of opioid mechanisms in the pyrazoline-induced antinociception was investigated by pretreating the animals with naloxone (2.75 µmol/kg, sc). Naloxone prevented Pz 3- but not Pz 2-induced antinociception. Moreover, naloxone pretreatment did not alter Pz 3-induced immobility. We conclude that Pz 3-induced antinociception involves opioid mechanisms but this is not the case for Pz 2.


Subject(s)
Animals , Male , Mice , Analgesics , Pain Measurement , Pyrazoles , Analysis of Variance , Dose-Response Relationship, Drug , Reaction Time , Receptors, Opioid , Restraint, Physical
3.
Braz. j. med. biol. res ; 36(1): 119-123, Jan. 2003. graf
Article in English | LILACS | ID: lil-326311

ABSTRACT

Surfactants are frequently used to improve solubilization of lipophilic drugs. Cremophor EL (CrEL) is a polyoxyethylated castor oil surfactant used to solubilize water-insoluble drugs such as anesthetic, antineoplastic, immunosuppressive and analgesic drugs, vitamins and new synthetic compounds, including potential analgesics. The antinociceptive effect of CrEL (3.2, 6.4 and 10.6 g/kg, in 10 ml/kg body weight, by gavage) on the abdominal writhing response induced by intraperitoneal administration of acetic acid (0.8 percent, 10 ml/kg body weight) and on the tail immersion test was investigated in mice. Control animals received castor oil (10 ml/kg body weight) or saline (0.9 percent NaCl, 10 ml/kg body weight). CrEL reduced nociception in a dose-dependent manner in both tests. At 10.6 g/kg, CrEL caused antinociception similar to that induced by dipyrone (300 mg/kg, by gavage) in the abdominal writhing test, and antinociception similar to that induced by morphine (20 mg/kg, by gavage) in the tail immersion test. The effect of castor oil was similar to that of saline in both assays. These data indicate that the appropriate controls should be used when evaluating the effects of potential antinociceptive agents dissolved in CrEL


Subject(s)
Animals , Male , Mice , Analgesics , Glycerol , Pain Measurement , Administration, Oral , Analgesics , Castor Oil , Dipyrone , Morphine , Pain Measurement
SELECTION OF CITATIONS
SEARCH DETAIL